首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

硬质颗粒对等离子熔覆碳化钨/多主元合金复合硬面涂层组织与耐磨性能的影响

  • 杨紫涵 ,
  • 刘咏 ,
  • 张伟 ,
  • 刘彬
展开
  • 中南大学 粉末冶金研究院,长沙 410083

收稿日期: 2022-11-14

  修回日期: 2022-12-20

  网络出版日期: 2023-03-23

Effects of hard particles on microstructure and wear-resistance of plasma cladding WC/multi-principal components alloy composite hard facing coating

  • YANG Zihan ,
  • LIU Yong ,
  • ZHANG Wei ,
  • LIU Bin
Expand
  • Powder Metallurgy Research Institute, Central South University, Changsha 410083, China

Received date: 2022-11-14

  Revised date: 2022-12-20

  Online published: 2023-03-23

摘要

采用等离子熔覆技术制备分别以铸造WC颗粒和烧结WC-Co球粒为硬质颗粒、以多主元合金为黏结相的2种硬面复合涂层,采用X射线衍射仪、扫描电镜、摩擦实验等手段,研究不同硬质颗粒对硬面复合涂层组织和耐磨性能的影响。结果表明:FeCrNi/WC-Co复合涂层中M6C的体积分数为20.1%,低于FeCrNi/WC复合涂层中M6C的体积分数(28.4%)。烧结WC-Co颗粒的热力学稳定性高,其WC的溶解程度低于铸造WC颗粒,可有效减少脆性M6C碳化物的析出。FeCrNi/WC-Co复合涂层的耐磨性能优于FeCrNi/WC涂层。FeCrNi/WC-Co涂层中较少的M6C相可避免涂层因脆性断裂而过早剥落,保证硬质相颗粒的完整性,提升硬面涂层的耐磨性能。

本文引用格式

杨紫涵 , 刘咏 , 张伟 , 刘彬 . 硬质颗粒对等离子熔覆碳化钨/多主元合金复合硬面涂层组织与耐磨性能的影响[J]. 粉末冶金材料科学与工程, 2023 , 28(1) : 35 -43 . DOI: 10.19976/j.cnki.43-1448/TF.2022086

Abstract

Two kinds of hardfacing composite coatings with cast WC particles and sintered WC-Co particles as hard particles and multi principal alloy as bonding phase were prepared by plasma cladding technology. The effects of different hard particles on the microstructure and wear resistance of the hardfacing composite coating were studied by means of X-ray diffraction, scanning electron microscopy and friction experiments. The results show that the volume fraction content of M6C in FeCrNi/WC-Co composite coating (20.1%) is lower than that in FeCrNi/WC composite coating (28.4%). The sintered WC-Co particles have high thermodynamic stability, and the dissolution of WC is lower than that of cast WC particles, which can effectively reduce the precipitation of brittle M6C carbides. The wear resistance of FeCrNi/WC-Co composite coating is better than that of FeCrNi/WC coating. FeCrNi/WC-Co coating with less M6C phases can avoid premature peeling of the coating due to brittle fracture, ensure the integrity of hard phase particles, and improve the wear resistance of the hardfacing coating.

参考文献

[1] 陈颢, 羊建高. 等离子束表面冶金强化硬面涂层[M]. 北京: 冶金工业出版社, 2017: 79.
CHEN Hao, YANG Jiangao.Plasma Beam Surface Metallurgically Strengthened Hard Surface Coating[M]. Beijing: Metallurgical Industry Press, 2017: 79.
[2] 李玉玺, 周伍喜. 钨基硬面技术的现状及发展[J]. 硬质合金, 2012, 29(5): 323-328.
LI Yuxi, ZHOU Wuxi.Current status and development of tungsten based hardfacing technology[J]. Hard Metals, 2012, 29(5): 323-328.
[3] MA Q, LU B W, ZHANG Y M, et al.Crack-free 60wt%WC reinforced FeCoNiCr high-entropy alloy composite coating fabricated by laser cladding[J]. Materials Letters, 2022, 324: 132667.
[4] OSTOVARI M A, SHABUROVA N A, SAMODUROVA M N, et al.Additive manufacturing of high entropy alloys: a practical review[J]. Journal of Materials Science & Technology, 2021, 77(18): 131-162.
[5] CANTOR B, CHANG I T, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering A, 2004, 375/377: 213-218.
[6] 刘咏, 曹远奎, 吴文倩, 等. 粉末冶金高熵合金研究进展[J]. 中国有色金属学报, 2019, 9(16): 2186-2184.
LIU Yong, CAO Yuankui, WU Wenqian, et al.Research progress in powder metallurgy high entropy alloys[J]. Transactions of Nonferrous Metals Society of China, 2019, 9(16): 2184-2186.
[7] QIAN C, LIU Y, CHENG H C, et al.Effect of the carbon content on the morphology evolution of the η phase in cemented carbides with the CoNiFeCr high entropy alloy binder[J]. International Journal of Refractory Metals and Hard Materials, 2022, 102: 105731.
[8] LUO W Y, LIU Y Z, SHEN J J.Effects of binders on the microstructures and mechanical properties of ultrafine WC-10%AlxCoCrCuFeNi composites by spark plasma sintering[J]. Journal of Alloys and Compounds, 2019, 791: 540-549.
[9] LUO W Y, LIU Y Z, LUO Y, et al.Fabrication and characterization of WC-AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering[J]. Journal of Alloys and Compounds, 2018, 754: 163-170.
[10] LUO W Y, LIU Y Z, TU C.Wetting behaviors and interfacial characteristics of molten AlxCoCrCuFeNi high-entropy alloys on a WC substrate[J]. Journal of Materials Science & Technology, 2021, 78: 192-201.
[11] GAO Y, LUO B H, HE K J, et al.Effect of Fe/Ni ratio on the microstructure and properties of WC-Fe-Ni-Co cemented carbides[J]. Ceramics International, 2018, 44(2): 2030-2041.
[12] CHANG S H, CHANG M H, HUANG K T.Study on the sintered characteristics and properties of nanostructured WC-15wt% (Fe-Ni-Co) and WC-15wt% Co hard metal alloys[J]. Journal of Alloys and Compounds, 2015, 649: 89-95.
[13] PENG Y B, ZHANG W, LI T C, et al.Effect of WC content on microstructures and mechanical properties of FeCoCrNi high-entropy alloy/WC composite coatings by plasma cladding[J]. Surface and Coatings Technology, 2020, 385: 125326.
[14] PENG Y B, ZHANG W, LI T C, et al.Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105044.
[15] XIE Z X, ZHANG C, WANG R D, et al.Microstructure and wear resistance of WC/Co-based coating on copper by plasma cladding[J]. Journal of Materials Research and Technology, 2021, 15: 821-833.
[16] WANG X Y, ZHOU S F, DAI X Q, et al.Evaluation and mechanisms on heat damage of WC particles in Ni60/WC composite coatings by laser induction hybrid cladding[J]. International Journal of Refractory Metals and Hard Materials, 2017, 64: 234-241.
[17] SUNDARAMOORTHY R, TONG S X, PAREKH D, et al. Effect of matrix chemistry and WC types on the performance of Ni-WC based MMC overlays deposited by plasma transferred arc (PTA) welding[J]. Wear, 2017, 376/377: 1720-1727.
[18] LI J F, ZHU Z C, PENG Y X, et al.Phase evolution and wear resistance of in-situ synthesized (Cr,W) 23C6-WC composite ceramics reinforced Fe-based composite coatings produced by laser cladding[J]. Vacuum, 2021, 190: 110242.
[19] NURMINEN J, NÄKKI J, VUORISTO P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(2): 472-478.
[20] ZHAO S B, XU S, YANG L J, et al.WC-Fe metal-matrix composite coatings fabricated by laser wire cladding[J]. Journal of Materials Processing Technology, 2022, 301: 117438.
[21] 魏莹. 等离子转移弧堆焊镍基合金/碳化钨复合材料的制备工艺与性能表征[D]. 上海: 同济大学, 2018.
WEI Ying.Preparation and characterization of Ni base alloy/tungsten carbide composites by plasma transfer arc surfacing[D]. Shanghai: Tongji University, 2018.
[22] WANG G Y, ZHANG J Z, SHU R Y, et al.High temperature wear resistance and thermal fatigue behavior of Stellite- 6/WC coatings produced by laser cladding with Co-coated WC powder[J]. International Journal of Refractory Metals and Hard Materials, 2019, 81: 63-70.
[23] 蓝阳, 马青原, 杨紫涵, 等. 激光熔覆法制备WC-Co球粒强化高熵合金复合硬质涂层的组织与性能[J]. 粉末冶金材料科学与工程, 2022, 27(5): 532-541.
LAN Yang, MA Qingyuan, YANG Zihan, et al.Microstructure and properties of WC-Co pellet-strengthened high entropy alloy composite hard coatings prepared by laser cladding[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(5): 532-541.
[24] DUAN H, LIU B, FU A, et al.Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting[J]. Journal of Materials Science & Technology, 2022, 99: 207-214.
[25] 曾晓雁, 吴新伟, 陶曾毅, 等. 激光熔覆铸造WC-Ni基合金中WC颗粒的烧损机理与评估[J]. 金属学报, 1997, 33(8): 863-868.
ZENG Xiaoyan, WU Xinwei, TAO Zengyi, et al.Burning mechanism and evaluation of WC particles in laser cladding cast WC-Ni alloy[J]. Acta Metallurgica Sinica, 1997, 33(8): 863-868.
[26] LIU D J, LI L Q, LI F Q, et al.WCp/Fe metal matrix composites produced by laser melt injection[J]. Surface and Coatings Technology, 2008, 202(9): 1771-1777.
[27] RIABKINA-FISHMAN M, RABKIN E, LEVIN P, et al.Laser produced functionally graded tungsten carbide coatings on M2 high-speed tool steel[J]. Materials Science and Engineering A, 2001, 302(1): 106-114.
[28] ZHAO S B, YANG L J, HUANG Y M, et al.Enrichment of in-situ synthesized WC by partial dissolution of ex-situ eutectoid-structured WC/W2C particle in the coatings produced by laser hot-wire deposition[J]. Materials Letters, 2020, 281: 128641.
[29] SOLODKYI I, TESLIA S, BEZDOROZHEV O, et al.Hardmetals prepared from WC-W2C eutectic particles and AlCrFeCoNiV high entropy alloy as a binder[J]. Vacuum, 2022, 195: 110630.
[30] GUNTHER K, BERGMANN J P.Understanding the dissolution mechanism of fused tungsten carbides in Ni-based alloys: an experimental approach[J]. Materials Letters, 2018, 213: 253-256.
[31] WANG H R, SUN Y F, QIAO Y Z, et al.Effect of Ni-coated WC reinforced particles on microstructure and mechanical properties of laser cladding Fe-Co duplex coating[J]. Optics & Laser Technology, 2021, 142: 107209.
[32] CIURANS-OSET M, MOUZON J, AKHTAR F.Use of AFM topography images to determine microindentation hardness of cast tungsten carbide powders[J]. International Journal of Refractory Metals & Hard Materials, 2022, 107: 105878.
[33] SHAO W, ZHOU Y F, ZHOU L, et al.Effect of Ti-doping on peeling resistance of primary M7C3 carbides in hypereutectic Fe-Cr-C hardfacing coating and gamma-Fe/ M(7)C9(3) interfacial bonding strength[J]. Materials & Design, 2021, 211: 2110133.
[34] YUAN Y L, WU H H, YOU M, et al.Improving wear resistance and friction stability of FeNi matrix coating by in-situ multi-carbide WC-TiC via PTA metallurgical reaction[J]. Surface and Coatings Technology, 2019, 378: 124957.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn