首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

Al2O3添加量对Li2ZnTi3O8陶瓷微波介电性能的影响

  • 董清臣 ,
  • 刘昆磊 ,
  • 于仕辉 ,
  • 刘献省 ,
  • 张伟风
展开
  • 1.平顶山工业职业技术学院 自动化与信息工程学院,平顶山 467000;
    2.天津大学 微电子学院,天津 300072;
    3.河南大学 光伏材料省重点实验室,开封 475004

收稿日期: 2022-08-25

  修回日期: 2022-11-13

  网络出版日期: 2023-03-23

基金资助

国家自然科学基金资助项目(11974099); 河南省科技攻关项目(212102210277)

Effect of Al2O3 addition on microwave dielectric properties of Li2ZnTi3O8 ceramics

  • DONG Qingchen ,
  • LIU Kunlei ,
  • YU Shihui ,
  • LIU Xiansheng ,
  • ZHANG Weifeng
Expand
  • 1. School of Automation and Information Engineering, Pingdingshan Polytechnic College, Pingdingshan 467000, China;
    2. School of Microelectronics, Tianjin University, Tianjin 300072, China;
    3. Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China

Received date: 2022-08-25

  Revised date: 2022-11-13

  Online published: 2023-03-23

摘要

采用固相反应法合成Li2ZnTi3O8,然后添加Al2O3(添加量为Li2ZnTi3O8质量的0~7%)制备Al2O3/Li2ZnTi3O8复合微波介电陶瓷,研究Al2O3添加量对复合陶瓷微观结构与介电性能的影响。结果表明,复合陶瓷主相为立方结构Li2ZnTi3O8,随Al2O3添加量增加,逐渐生成ZnAl2O4和TiO2第二相,这2种物质对陶瓷的微波介电性能有很大影响。Al2O3的添加可抑制Li2ZnTi3O8晶粒的生长。烧结温度为1 100 ℃、Al2O3添加量为1%时,Al2O3/Li2ZnTi3O8复合微波介电陶瓷获得最佳介电性能,介电常数εr ≈ 26.1,Q×f ≈ 87 900 GHz,谐振频率温度系数τf ≈ 13.3×10-6-1

本文引用格式

董清臣 , 刘昆磊 , 于仕辉 , 刘献省 , 张伟风 . Al2O3添加量对Li2ZnTi3O8陶瓷微波介电性能的影响[J]. 粉末冶金材料科学与工程, 2023 , 28(1) : 28 -34 . DOI: 10.19976/j.cnki.43-1448/TF.2022072

Abstract

Li2ZnTi3O8 was synthesized by solid-state reaction. The microwave dielectric ceramics composed of Li2ZnTi3O8 and Al2O3 were prepared (The Al2O3 mass is 0-7% of Li2ZnTi3O8 mass). The effects of Al2O3 addition amount on the microstructures and dielectric properties of the samples were investigated. The results show that the primary phase of the composite ceramics is cubic structure Li2ZnTi3O8. ZnAl2O4 and TiO2 phases are observed with the increase of Al2O3 addition amount, which have a great influence on the microwave dielectric properties of the ceramic samples. The addition of Al2O3 can inhibit the growth of Li2ZnTi3O8 grains. When the sintering temperature is 1 100 ℃ and the Al2O3 addition is 1%, the microwave dielectric ceramics composed of Li2ZnTi3O8 and Al2O3 obtain the best dielectric properties: εr ≈ 26.1, Q×f ≈ 87 900 GHz, τf ≈13.3×10-6 -1.

参考文献

[1] 刘伟, 冷寒生, 李波. 钴离子取代对Ca5Mg(4-x)Cox(VO4)6陶瓷微波介电性能的影响[J]. 硅酸盐学报, 2021, 49(3): 441-447.
LIU Wei, LENG Hansheng, LI Bo.Effect of Co substitution on microwave dielectric properties of Ca5Mg4-xCox(VO4)6 ceramics[J]. Journal of The Chinese Ceramic Society, 2021, 49(3): 441-447.
[2] 谢鸿远, 于泽宗, 尹长志, 等. ⅢA族元素化合物微波介电性能的研究进展[J]. 电子元件与材料, 2021, 40(6): 536-546.
XIE Hongyuan, YU Zezong, YIN Changzhi, et al.Research progress on microwave dielectric properties of compounds with ⅢA group elements[J]. Electronic Components and Materials, 2021, 40(6): 536-546.
[3] LI Y, FU R, GAO M Y, et al.Improved Zn0.9Mg0.1Al2O4 microwave dielectric ceramics with high thermal conductivity[J]. Journal of Electronic Materials, 2021, 50(6): 3372-3379.
[4] 孙赫. 电介质物理与微波介质陶瓷的研究进展[J]. 电子质量, 2021, 4(4): 1-4.
SUN He.Research progress of dielectric physics and microwave dielectric ceramics[J]. Electronics Quality, 2021, 4(4): 1-4.
[5] CHEN S L, LI L X, YU S H, et al.High dielectric constant and high-Q in microwave ceramics of SrTiO3 co-doped with aluminum and niobium[J]. Journal of the American Ceramic Society, 2018, 101(5): 1835-1840.
[6] CHEN S L, LI L X, YU S H, et al.The effects of inequivalent La3+ introduction on the structure and dielectric properties of SrTiO3 ceramic at microwave range[J]. Materials Chemistry and Physics, 2018, 216: 339-344.
[7] GEORGE S, SEBASTIAN M T.Synthesis and microwave dielectric properties of novel temperature stable high Q Li2ATi3O8 (A=Mg, Zn) ceramics[J]. Journal of the American Ceramic Society, 2010, 93(8): 2164-2166.
[8] ZHANG P, HUA Y B, XIA W S, et al.Effect of H3BO3 on the low temperature sintering and microwave dielectric properties of Li2ZnTi3O8 ceramics[J]. Journal of Alloys and Compounds, 2012, 534(5): 9-12.
[9] LI W, LI J H, SHEN J X, et al.Crystal structure, Raman spectra, and microwave dielectric properties of high-Q Li2ZnTi3O8 systems with Nb2O5 addition[J]. Ceramics International, 2021, 47: 8601-8609.
[10] ZITANI M K, EBADZADEH T, BANIJAMALI S, et al.Microstructural and microwave dielectric properties of LZT (Li2ZnTi3O8) ceramics sintered in presence of bismuth borate glass for LTCC applications[J]. Ceramics International, 2018, 44(4): 4016-4026.
[11] 朱伟君, 陈金鑫, 高宇晗, 等. 硅基掺铒二氧化钛薄膜发光器件的电致发光:共掺镱的增强发光作用[J]. 物理学报, 2019, 68(12): 115-121.
ZHU Weijun, CHEN Jinxin, GAO Yuhan, et al.Electroluminescence from silicon-based light-emitting device with erbium-doped TiO2 films: Enhancement effect of ytterbium codoping[J]. Acta Physca. Sinica, 2019, 68(12): 115-121.
[12] KOUR S.Structural and magnetic investigation of Al3+ and Cr3+ substituted Ni-Co-Cu nanoferrites for potential applications[J]. Solid State Sciences, 2020, 110: 106445.
[13] ULLAH B, LEI W, CAO Q S, et al.Structure and microwave dielectric behavior of a-site-doped Sr(1-1.5x)CexTiO3 ceramics system[J]. Journal of the American Ceramic Society, 2016, 99(10): 3286-3292.
[14] FU P, WANG Z Y, LIN Z D, et al.The microwave dielectric properties of transparent ZnAl2O4 ceramics fabricated by spark plasma sintering[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(13): 9589-9595.
[15] LEI M.The impact of composite effect on dielectric constant and tunability in ferroelectric-dielectric system[J]. Journal of the American Ceramic Society, 2015, 98(10): 3250-3258.
[16] HE H, XU Y B.A unified equation for predicting the dielectric constant of a two phase composite[J]. Applied Physics Letter, 2014, 104(6): 062906.
[17] KIM D W, PARK B W, CHUNG J H, et al.Mixture behavior and microwave dielectric properties in the low-fired TiO2-CuO system[J]. Japanese Journal of Applied Physics, 2000, 39(5): 2696-2700.
[18] ZHENG H R, YU S H, LI L X, et al.Crystal structure, mixture behavior, and microwave dielectric properties of novel temperature stable (1-x)MgMoO4-xTiO2 composite ceram[J]. Journal of the European Ceramic Society, 2017, 37(15): 4661-4665.
[19] WU M J, ZHANG Y C, CHEN J D, et al.Preparation, performances and reaction process of NiZrNb2O8 microwave dielectric ceramics[J]. Solid State Phenomena, 2018, 281: 591-597.
[20] HE L, JIANG X W, XU Y J, et al.Low-temperature sintering and microwave dielectric properties of a new Ba/Ti-based diphase composite ceramic[J]. Journal of Materials Science, 2022, 57: 12356-12363.
[21] 王刚. 低损耗铌酸盐系微波介质材料低温烧结与性能调控研究[D]. 成都: 电子科技大学, 2021.
WANG Gang.Low temperature sintering and property control of low loss niobate microwave dielectric materials [D]. Chengdu: University of Electronic Science and Technology of China, 2021.
[22] REN H, PENG H Y, XIE T Y, et al.Temperature stable microwave dielectric ceramics in Li2ZnTi3O8-based composite for LTCC applications[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(5): 12978-12985.
[23] YANG H C, ZHANG S R, YANG H Y, et al.NdNb1-x (Mg1/4W3/4)xO4 (0.02≤x≤0.06) solid solution characterized by infrared spectrum and complex chemical theory[J]. Journal of Alloys and Compounds, 2019, 787(2): 358-366.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn