[1] YABUUCHI N, KUBOTA K, DAHBI M, et al.Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
[2] HUANG Q, LIU J, XU S, et al.Roles of coherent interfaces on electrochemical performance of sodium layered oxide cathodes[J]. Chemistry of Materials, 2018, 30(14): 4728-4737.
[3] ZHAO F P, GONG Q F, TRAYNOR B, et al.Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries[J]. Nano Research, 2016, 9(10): 3162-3170.
[4] KIM H, KIM H, DING Z, et al.Recent progress in electrode materials for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(19): 1600941.
[5] YAN Y, YIN Y X, GUO Y G, et al.Effect of cations in ionic liquids on the electrochemical performance of lithium-sulfur batteries[J]. Science China Chemistry, 2014, 57(11): 1564-1569.
[6] XIANG X D, ZHANG K, CHEN J.Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Advanced Materials, 2015, 27(36): 5343-5364.
[7] HOSONO E, SAITO T, HOSHINO J, et al.High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode[J]. Journal of Power Sources, 2012, 217(1): 43-46.
[8] CAO Y L, XIAO L F, WANG W, et al.Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life[J]. Advanced Materials, 2011, 23(28): 3155-3160.
[9] HAN M H, GONZALO E, SINGH G, et al.A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries[J]. Energy & Environmental Science, 2014, 8(1): 12-81.
[10] XIONG F Y, AN Q, XIA L, et al.Revealing the atomistic origin of the disorder-enhanced Na-storage performance in NaFePO4 battery cathode[J]. Nano Energy, 2019, 57: 608-615.
[11] KABBOUR H, COILLOT D, COLMONT M, et al.α-Na3M2(PO4)3 (M=Ti,Fe): absolute cationic ordering in NASICON-type phases[J]. Journal of the American Chemical Society, 2011, 133(31): 11900-11903.
[12] DENG W W, SHEN Y F, QIAN J F, et al.A perylene diimide crystal with high capacity and stable cyclability for Na-ion natteries[J]. ACS Applied Materials & Interfaces, 2015,7(38): 21095-21099.
[13] YANG D Z, XU J, LIAO X Z, et al.Structure optimization of prussian blue analogue cathode materials for advanced sodium ion batteries[J]. Chemical Communications, 2014, 50(87): 13377-13380.
[14] WESSELLS C D, PEDDADA S V, HUGGINS R A, et al.Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Letters, 2011, 11(12): 5421-5425.
[15] KIM J, KIM Y, PARK S, et al.Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries[J]. Energy & Environmental Science, 2016, 9(4): 1264-1269.
[16] DELMAS C, FOUASSIER C, HAGENMULLER P.Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(1): 81-85.
[17] HAN M H, GONZALO E, CASAS-CABANAS M, et al.Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process[J]. Journal of Power Sources, 2014, 258: 266-271.
[18] MORTEMARD de BOISSE B, CHENG J H, CARLIER D, et al. O3-NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: structural evolutions and redox mechanisms upon Na+(de) intercalation[J]. Journal of Materials Chemistry A, 2015, 3(20): 10976-10989.
[19] DAI H, YANG C H, OU X, et al.Unravelling the electrochemical properties and thermal behavior of NaNi2/3Sb1/3O2 cathode for sodium-ion batteries by in situ X-ray diffraction investigation[J]. Electrochimica Acta, 2017, 257: 146-154.
[20] YUAN D D, LIANG X M, WU L, et al.A honeycomb- layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries[J]. Advanced Materials, 2014, 26(36): 6301-6306.
[21] WANG P F, YAO H R, YOU Y, et al.Understanding the structural evolution and Na+ kinetics in honeycomb-ordered O'3-Na3Ni2SbO6 cathodes[J]. Nano Research, 2018, 11(6): 3258-3271.
[22] YOU Y, KIM S O, MANTHIRAM A.A honeycomb- layered oxide cathode for sodium-ion batteries with suppressed P3-O1 phase transition[J]. Advanced Energy Materials, 2017, 7(5): 1601698.
[23] WANG P, GUO Y, DUAN H, et al.Honeycomb-ordered Na3Ni1.5M0.5BiO6 (M=Ni,Cu,Mg, Zn) as high-voltage layered cathodes for sodium-ion batteries[J]. ACS Energy Letters, 2017, 2(12): 2715-2722.
[24] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.
[25] BLÖCHL B, TSINAS L. Automatic road following using fuzzy control[J]. Control Engineering Practice, 1994, 2(2): 305-311.
[26] PERDEW P J, BURKE K, MATTHIAS B, et al.Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 18(77): 3865-3868.
[27] HENKELMAN G, UBERUAGA B P, JONSSON H.A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22): 9901-9904.
[28] HENKELMAN G, JONSSON H.Improved tangent estimate in the nudged elastic band method minimum energy paths and saddle points[J]. The Journal of Chemical Physics, 2000, 113(22): 9978-9985.
[29] XIAO L, DING Z, HUANG Q, et al.Electronic-structure tuning of honeycomb layered oxide cathodes for superior performance[J]. Acta Materialia, 2020, 199: 34-41.
[30] CHEN S, HAN E S, XU H, et al.P2-type Na0.67Ni0.33-xCuxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries[J]. Ionics, 2017, 23(11): 3057-3066.
[31] LIU J, YIN L, WU L, et al.Quantification of honeycomb number-type stacking faults: application to Na3Ni2BiO6 cathodes for Na-ion batteries[J]. Inorganic Chemistry, 2016, 55(17): 8478-8492.
[32] MA J, BO S H, WU L J, et al.Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2: honeycomb-ordered cathodes for Na-ion batteries[J]. Chemistry of Materials, 2015, 27(7): 2387-2399.
[33] LIANG C P, KONG F T, LONGO R, et al.Site-dependent multicomponent doping strategy for Ni-rich LiNi1-2y- CoyMnyO2(y=1/12) cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(48): 25303-25313.