采用传统模压方法一体化成形电感时,成形压力大,成形的电感易发生短路、绝缘阻抗突变、包覆层破裂剥落等问题。本文提出一种新型的电感成形方法?模塑成形,通过有限元软件对电感模塑成形的完整过程进行模拟分析,研究模具温度与固化时间对固化度的影响,以及充填速度对充填时间与气孔大小的影响,从而得到优化的成形工艺参数,然后进行电感模塑成形实验,测试电感感值(L)、直流电阻(direct current resistance, DCR)与损耗(full load inductance, FLL)。模拟结果表明:随模具温度升高或固化时间延长,固化度增大;随充填速度增大,充填时间缩短,气孔的数量和尺寸先减小后增大。模塑成形电感的最佳工艺参数为:模具温度175 ℃、充填速度3 mm/s和固化时间150 s。在该工艺参数下成形的FeSiAl/环氧树脂电感,平均感值为46.58 μH、直流电阻为116 mΩ、在2.6 A电流下通电30 min,感值下降率为33.25%,电感的关键指标都优于传统模压工艺制备的电感。表明模塑法一体化成形电感可行,为提高电感质量和生产效率提供了新途径。
When the traditional molding method is used to prepare the integrated forming inductance, the forming pressure is large, and the formed inductance is prone to short circuit, sudden change of insulation impedance, coating cracking and peeling. In this paper, a new inductance molding method, liquid composites molding, was proposed. The whole process of inductive molding was simulated and analyzed by finite element software. The effects of mold temperature and filling time on the curing degree, as well as the effects of filling speed on the filling time and pore size were studied, so as to obtain the optimized forming process parameters. Then, an inductance molding experiment is conducted to test the inductance value (L), direct current resistance (DCR) and full load resistance (FLL). The results show that the curing degree increases with the increase of mold temperature or curing time. With the increase of filling speed, the filling time is shortened, and the number and size of pores first decrease and then increase. The optimum process parameters are mold temperature 175 ℃, filling speed 3 mm/s and curing time 150s. The inductance (FeSiAl/epoxy resin) has an average inductive value of 46.58 μH. The DCR is 116 mΩ, and the inductive value drop rate is 33.25% under 2.6 A for 30 min. The key indicators of the inductance are better than those of inductance prepared by traditional molding process. It proves that the liquid
[1] 陶龙旭, 何俊彦, 张怀武, 等. 一体化成形电感铁粉心软磁复合材料研究进展[J]. 磁性材料及器件, 2012, 43(1): 1-5.
TAO Longxu, HE Junyan, ZHANG Huaiwu, et al.Research progress of integrated forming inductance iron core soft magnetic composites[J]. Magnetic Materials and Devices, 2012, 43(1): 1-5.
[2] DRYNDA A, HASSEL T, HOEHN R, et al.Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications[J]. Journal of Biomedical Materials Research: Part A, 2016, 93A(2): 763-775.
[3] LIN Z W, ZHU J G.Three-dimensional magnetic properties of soft magnetic composite materials[J]. Journal of Magnetism and Magnetic Materials, 2007, 312(1): 158-163.
[4] 王麦茹, 魏兵团, 陈睿, 等. 电感器的现状和发展趋势[J].科技资讯, 2013(23): 130-131.
WANG Mairu, WEI Bingtuan, CHEN Rui, et al.Present situation and development trend of inductor[J]. Journal of Information Science and Technology, 2013(23): 130-131.
[5] FRAYMAN L, QUINN S, QUINN R, et al.Advanced soft magnetic composite materials for AC applications with reduced iron losses[J]. Powder Metallurgy, 2015, 58(5): 335-338.
[6] TAGHVAEI A H, SHOKROLLAHI H, JANGHORBAN K.Properties of iron-based soft magnetic composite with iron phosphate-silane insulation coating[J]. Journal of Alloys and Compounds, 2009, 481(1): 681-686.
[7] WANG L, QIN Y, WANG H, et al.A new model for designing multi window multi permeability nonlinear LTCC inductors[J]. IEEE Transactions on Industry Applications, 2015, 51(6): 4677-4687.
[8] CAMBERO E, MUNOZ R R, ARAUJO H, et al.Application of active inductors in a CMOS LNA[C]// IEEE International Symposium on Consumer Electronics. Sao Paulo, Brazil: IEEE, 2016: 1-2.
[9] SINGH S, GURJAR R C.A low power, low phase noise VCO using cascoded active inductor[C]// IEEE International Conference on Information. Indore, India: IEEE, 2018: 1-5.
[10] 胡锋. 面向特种磁性元件需求的软磁复合材料的磁性能及损耗机制研究[D]. 合肥: 安徽大学, 2020.
HU Feng.Research on the magnetic performance and loss mechanism of soft magnetic composites for special magnetic elements[D]. Hefei: Anhui University, 2020.
[11] TAGHVAEI A H, SHOKROLLAHI H, GHAFFARI M, et al.Influence of particle size and compaction pressure on the magnetic properties of iron-phenolic soft magnetic composites[J]. Journal of Physics & Chemistry of Solids, 2010, 71(1): 7-11.
[12] 陈佳琪. 铁粉的绝缘包覆处理及模压后磁电性能研究[D].济南: 山东大学, 2020.
CHEN Jiaqi.Insulation coating treatment of iron powder and magnetoelectric properties after molding pressure[D]. Jinan: Shandong University, 2020.
[13] 程丹妮. 低损耗铁基磁粉芯的制备与性能研究[D]. 广州: 华南理工大学, 2020.
CHENG Danni.Preparation and performance study of low-lossiron-based magnetic powder core[D]. Guangzhou: South China University of Technology, 2020.
[14] MANJULA J, KRISHNA P S, RUBEENA D.Design and performance analysis of active inductor based reconfigurable regulated cascode LNA for tunable RF front end[C]// VENKATESAN R, TAMILVANAN A. 2017 International Conference on Communication and Signal Processing (ICCSP). Chennai, India: IEEE, 2017: 0222-0227.
[15] BAYRAML E, GÖLGELIOĞLU Ö, ERTAN H B. Powder metal development for electrical motor applications[J]. Journal of Materials Processing Technology, 2005, 161(1/2): 83-88.
[16] SHOKROLLAHI H, JANGHORBAN K.Effect of warm compaction on the magnetic and electrical properties of Fe-based soft magnetic composites[J]. Journal of Magnetism & Magnetic Materials, 2007, 313(1): 182-186.
[17] HEMMATI I, HOSSEINI H, KIANVASH A.The correlations between processing parameters and magnetic properties of an iron-resin soft magnetic composite[J]. Journal of Magnetism & Magnetic Materials, 2006, 305(1): 147-151.
[18] 甘书峰, 祁艳会, 曹伟, 等. 一种带有导电片嵌件塑件的二次成形方法[J]. 工程塑料应用, 2014, 42(9): 46-48.
GAN Shufeng, QI Yanhui, CAO Wei, et al.A Secondary forming method for plastic parts with conductive insert[J]. Engineering Plastics Application, 2014, 42(9): 46-48.
[19] 王林科, 郭宾. 一体成形电感成形方法: CN109166717A [P].2020-03-20.
WANG Linke, GUO Bin. Integrated forming and inductive forming method: CN109166717A [P].2020-03-20.
[20] 覃维, 王鲜, 聂彦, 等. 基于FEM的一体成形电感电磁特性仿真分析[J]. 磁性材料及器件, 2021, 52(6): 21-28.
QIN Wei, WANG Xian, NIE Yan, et al.Simulation analysis of inductive electromagnetic characteristics based on FEM[J]. Magnetic Materials and Devices, 2021, 52(6): 21-28.
[21] LE H T, NOUR Y, HAN A, et al.Microfabricated air-core toroidal inductor in very high frequency power converters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018: 6(2): 604-613.
[22] LE H T, NOUR Y, PAVLOVIC Z, et al.High-q three-dimensional microfabricated magnetic-core toroidal inductors for power supplies in package[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 74-85.
[23] WANG X J, CHEN H H, SHI X L, et al.A novel NiZn ferrite integrated magnetic solenoid inductor with a high quality factor at 0.7-6 GHz[J]. AIP Advances, 2016, 7(5) : 056606.
[24] 江青松, 柳和生, 熊爱华, 等. 长纤维增强聚合物注塑流动纤维取向分布数值模拟[J]. 高分子材料科学与工程, 2015, 31(3): 123-127.
JIANG Qingsong, LIU Hesheng, XIONG Aihua, et al.Numerical simulation of flow fiber orientation distribution in injection molding of long fiber reinforced polymer[J]. Polymer Materials Science and Engineering, 2015, 31(3): 123-127.
[25] 姚震, 李金国, 谢海波. 基于Moldflow的车灯装饰框拐角气痕成因分析与对策[J]. 轻工机械, 2021, 39(4): 94-97, 103.
YAO Zhen, LI Jinguo, XIE Haibo.Analysis and countermeasures of gas marks on corner of headlamp decoration frame based on Moldflow[J]. Light Industry Machinery, 2021, 39(4): 94-97, 103.
[26] 李孝兰, 段华军, 王钧, 等. 乙烯基树脂后固化制度的优化研究[J]. 热固性树脂, 2012, 27(5): 40-43.
LI Xiaolan, DUAN Huajun, WANG Jun, et al.Optimization of recuring system[J]. Thermosetting Resin, 2012, 27(5): 40-43.
[27] 李真胜. 压射速度对铝合金充型流动状态及孔隙率的影响研究[D]. 重庆: 重庆大学, 2018.
LI Zhensheng.Study on effect of injection velocity on filling flow state and porosity of aluminum alloy[D]. Chongqing: Chongqing University, 2018.