载流摩擦副摩擦磨损性能的稳定性决定机构的服役性能和寿命。本文选取具有接触电阻小、电噪声小等优点的AuNi9/PdNi-Au摩擦副,通过摩擦因数和接触电压降曲线、相对稳定系数、标准差及频数分布等多项统计学评价指标,研究在180、280和380 mN载荷下摩擦副的载流摩擦稳定性。结果表明,载荷为180 mN时,AuNi9电刷的磨损机制以黏着磨损和磨粒磨损为主,当载荷升高至380 mN时,电刷的磨损机制主要为疲劳磨损和磨粒磨损。随载荷增加,AuNi9/PdNi-Au摩擦副的摩擦稳定性先升高后降低,电接触稳定性逐渐提高。在载荷为280 mN时,摩擦因数的平均值为0.330,标准差为0.180,接触电压降的平均值为89.723 mV,标准差为41.419 mV,电刷表面粗糙度为0.207 μm,均为三种载荷下的最小值,AuNi9/PdNi-Au摩擦副表现出较好的载流摩擦稳定性。
The stability of friction and wear properties of current-carrying friction pair determines the service performance and life of the mechanism. In this paper, AuNi9/PdNi-Au friction pair with the advantages of low contact resistance and low electrical noise was selected. The current friction stability of the friction pair under 180, 280 and 380 mN loads was studied by multiple statistical evaluation indexes such as friction coefficient, contact voltage drop curve, relative stability coefficient, standard deviation and frequency distribution. The results show that when the load is 180 mN, the wear mechanism of the AuNi9 brush is mainly adhesive wear and abrasive wear. The wear mechanism of the brush is mainly fatigue wear and abrasive wear when the load increases to 380 mN. With the increase of the load, the friction stability of the AuNi9/PdNi-Au friction pair first increases and then decreases, and the electrical contact stability increases gradually. When the load is 280 mN, the average friction coefficient is 0.330, the standard deviation is 0.180, the average contact voltage drop is 89.723 mV, the standard deviation is 41.419 mV, and the brush surface roughness is 0.207 μm, all are the minimum values under three kinds of loads. The friction pair shows good current carrying friction stability.
[1] HONG J, HU Y D, ZHANG Y Z, et al.Research of life test and design of system for satellite-borne infrared detector assembly[J]. Optics and Precision Engineering, 2018, 26(5): 1148-1155.
[2] 甘克力, 周明玮, 葛升民, 等. 带双轴太阳帆板驱动器的卫星建模与姿态控制[J]. 电机与控制学报, 2013, 17(1): 82-87.
GAN Keli, ZHOU Mingwei, GE Shengmin, et al.Modeling and attitude control of sateUite with dual axis solar array actuator[J]. Electric Machines and Control, 2013,17(1): 82-87.
[3] WANG D Y, LUO X H, GUO F Y.Surface roughness of sliding electrical contact and characteristics of contact resistance[J]. Journal of Liaoning Technical University, 2021, 40(1): 72-77.
[4] LI Y C, HAN C X.Analysis of influence factors of the surface micro-topography of sliding electrical contact[J]. Journal of Liaoning Technical University, 2021, 40(3): 265-269.
[5] YANG H J, LI C, LIU Y H, et al.Study on the delamination wear and its influence on the conductivity of the carbon contact strip in pantograph-catenary system under high-speed current-carrying condition[J]. Wear, 2021, 447(6): 203-223.
[6] YANG H J, LIU Y H, CUI X L, et al.Influence of reciprocating distance on the delamination wear of the carbon strip in pantograph-catenary system at high sliding-speed with strong electrical current[J]. Engineering Failure Analysis, 2019, 104(4): 887-897.
[7] ZHAO J, ZHOU Q G, ZOU K, et al.The current-carrying tribological properties of Cu/Graphene composites[J]. Journal of Tribology, 2021, 143(10): 1-16.
[8] FENG X L, WANG M.Effects of load and temperature on friction and wear properties of B5 copper alloys[J]. Hot Working Technology, 2021, 50(24): 65-68, 73.
[9] STRAFFELINI G, PELLIZZARI M, MOLINARIA A.Influence of load and temperature on the dry sliding behaviour of Al-based metal-matrix-composites against friction material[J]. Wear, 2004, 256(7/8): 754-763.
[10] ZHANG W, YAMASHITA S, KITA H.Effects of load on tribological properties of B4C and B4C-SiC ceramics sliding against SiC balls[J]. Journal of Asian Ceramic Societies, 2020, 104(4): 1-11.
[11] 徐晓峰, 宋克兴, 杜三明. 载流条件下铜基粉末冶金材料的摩擦磨损行为[J]. 材料保护, 2008, 41(7): 66-68.
XU Xiaofeng, SONG Kexing, DU Sanming.Friction and wear behavior of copper-based powder metallurgy materials under current-carrying conditions[J]. Materials Protection, 2008, 41(7): 66-68.
[12] XIE X L, XIAO J K, QIAN Z Y, et al.Sliding electrical contact behavior of AuAgCu brush on Au plating[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9): 3029-3036.
[13] ZHAO J, PENG Y T, ZHOU Q G, et al.The current-carrying tribological properties of Cu/Graphene composites[J]. Journal of Tribology, 2021, 143(10): 1-16.
[14] CHEN Z H, HUI L C, SHI G.Study on characteristics of sliding electrical contact of pantograph-catenary under fluctuating pressure load[J]. High Voltage Apparatus, 2018, 54(7): 82-88.
[15] HUANG Z Y, ZHAI H X, GUAN M L, et al.Oxide-film- dependent tribological behaviors of Ti3SiC2[J]. Wear, 2007, 262(9): 1079-1085.
[16] LI C Y, FANG H Y, XU J, et al.A method for engine speed control evaluation based on 3σ principle[J]. Small Internal Combustion Engine and Vehicle Technique, 2021, 50(3): 26-29.
[17] SAWA K, SUZAUKI Y, MORITA N, et al. Effect of lubricant on lifetime of Au-Plated slip-ring and Ag-Pd-Cu brush system for small electric power[J]. IEICE Transactions on Electronics, 2012, C(9): 1465-1472.
[18] BRAUNOVIC M, KONCHITS V, MYSHKIN N K.Electrical Contacts: Fundamentals, Applications and Technology[M]. Boca Raton: CRC Press, 2010: 5-7.