LaNi5储氢合金粉末易氧化,严重影响其储氢性能。本文采用溶液浸渍法将聚甲基丙烯酸甲酯(poly methyl meth acrylate, PMMA)对LaNi5合金粉末进行表面包覆改性,研究粉末的微观形貌、储氢性能和抗氧化性能。结果表明,空气氧化后,PMMA包覆LaNi5合金的储氢量保持在1.29%(质量分数),而LaNi5合金的储氢量仅为1.15%。对比未包覆的LaNi5合金,PMMA包覆LaNi5合金在空气氧化后仍保持较好的吸放氢动力学性能和储氢量,且具备良好的循环稳定性。因此,PMMA包覆LaNi5合金可减缓合金在空气中的氧化反应,改善合金的抗氧化性能,有利于合金的应用和储氢安全性。
LaNi5 hydrogen storage alloy powders are easy to be oxidized, seriously affecting the hydrogen storage properties of LaNi5 alloy. In this paper, PMMA (poly methyl meth acrylate) was used to modify the surface of LaNi5 alloy by the solution impregnation method. The micrmorphology, hydrogen storage properties, and oxidation resistance of LaNi5 alloy were investigated. The results show that the hydrogen storage capacity of air-oxidated PMMA-coated LaNi5 alloy after oxidation is maintained at 1.29%, while that of LaNi5 alloy decreases to 1.15% (mass fraction, %, the same below). Compared with the uncoated LaNi5 alloy, the dehydrogenation and hydrogenation kinetic and hydrogen storage capacity of PMMA-coated LaNi5 alloy after air-exposure are well maintained, and the PMMA-coated LaNi5 alloy possesses good cycling stability. Therefore, PMMA-coated LaNi5 alloy can mitigate the oxidation reaction of the alloy and improve the oxidation resistance of the alloy. It is beneficial for alloy applications and hydrogen storage safety.
[1] MORADI R, GROTH K M.Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis[J]. International Journal of Hydrogen Energy, 2019, 44(23): 12254-12269.
[2] LAI Q, SUN Y, WANG T, et al.How to design hydrogen storage materials fundamentals, synthesis, and storage tanks[J]. Advanced Sustainable Systems, 2019, 3(9): 1-64.
[3] 周承商, 刘煌, 刘咏, 等. 金属氢化物热能储存及其研究进展[J]. 粉末冶金材料科学与工程, 2019, 122(5): 391-399.
ZHOU Chengshang, LIU Huang, LIU Yong, et al.Metal hydride thermal energy storage and its research progress[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 122(5): 391-399.
[4] 殷卓成, 杨高, 刘怀, 等. 氢能储运关键技术研究现状及前景分析[J]. 现代化工, 2021, 41(11): 53-57.
YIN Zhuocheng, YANG Gao, LIU Huai, et al.Research status and prospect analysis of key technologies for hydrogen energy storage and transportation[J]. Modern Chemical Industry, 2021, 41(11): 53-57.
[5] LIU H, SUN P, BOWMAN R C, et al.Effect of air exposure on hydrogen storage properties of catalyzed magnesium hydride[J]. Journal of Power Sources, 2020, 454(6): 1-10.
[6] 赵炳建, 赵艳琴, 司新国, 等. 氧化物直接制备储氢合金LaNi5新工艺[J]. 粉末冶金材料科学与工程, 2016, 100(1): 154-159.
ZHAO Binjian, ZHAO Yanqin, SI Xinguo, et al.Direct preparation of LaNi5 hydrogen storage alloy from oxide precursors by a new process[J]. Materials Science and Engineering of Powder Metallurgy, 2016, 100(1): 154-159.
[7] 陈思, 张宁, 阚洪敏, 等. LaNi5系储氢合金的研究现状及展望[J]. 化工新型材料, 2017, 45(9): 26-28.
CHEN Si, ZHANG Ning, KAN Hongmin, et al.Advance and trend of LaNi5 base hydrogen storage material[J]. New Chemical Materials, 2017, 45(9): 26-28.
[8] 胡彦泽, 但贵萍, 杜良, 等. 储氢合金抗气体杂质毒化的研究进展[J]. 化学研究与应用, 2012, 24(7): 1009-1014.
HU Yanze, DAN Guiping, DU Liang, et al.Advances in the research of hydriding alloys resistance to gaseous impurities[J]. Chemical Research and Application, 2012, 24(7): 1009-1014.
[9] SANDROCK G D, GOODELL P D.Surface poisoning of LaNi5, FeTi and (Fe,Mn) Ti by O2, CO and H2O[J]. Journal of the Less-Common Metals, 1980, 73(1): 161-168.
[10] CORRE S, GOTOH Y, SAKAGUCHI H, et al.The hydrogen confinement in LaNi5 and LaNi5Zr hydrides using poisonous gases[J]. Journal of Alloys and Compounds, 1997, 255(1/2): 117-121.
[11] YANG F S, CHEN X Y, WU Z, et al.Experimental studies on the poisoning properties of a low-plateau hydrogen storage alloy LaNi4.3Al0.7 against CO impurities[J]. International Journal of Hydrogen Energy, 2017, 42(25): 16225-16234.
[12] BARDHAN R, RUMINSKI A M, BRAND A, et al.Magnesium nanocrystal-polymer composites: a new platform for designer hydrogen storage materials[J]. Energy and Environmental Science, 2011, 4(12): 4882-4895.
[13] CAO H, GEORGOPANOS P, CAPURSO G, et al.Air-stable metal hydride-polymer composites of Mg(NH2)2-LiH and TPX™[J]. Materials Today Energy, 2018, 10(8): 98-107.
[14] FAN Y, CHEN D, YUAN Z, et al.Flexible, water-resistant and air-stable LiBH4 nanoparticles loaded melamine foam with improved dehydrogenation[J]. Frontiers in Chemistry, 2020, 8(2): 45-53.
[15] JEON K J, MOON H R, RUMINSKI A M, et al.Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts[J]. Nature Materials, 2011, 10(4): 286-290.
[16] WANG T, ZHU Y, ZHANG Y, et al.Surface modification of Mg3MnNi2 hydrogen storage electrode alloy with polyaniline[J]. International Journal of Hydrogen Energy, 2017, 42(20): 14220-14226.
[17] CHO E S, RUMINSKI A M, ALONI S, et al.Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage[J]. Nature Communications, 2016, 7(1): 1-8.
[18] ACHARYA N, KULSHRESTHA V, AWASTHI K, et al.Hydrogen separation in doped and blend polymer membranes[J]. International Journal of Hydrogen Energy, 2008, 33(1): 327-331.
[19] HONG J, LEE S, SEO J, et al.A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid[J]. ACS Applied Materials and Interfaces, 2015, 7(6): 3554-3561.
[20] MIN K E, PAUL D R.Effect of tacticity on permeation properties of poly (methyl methacrylate)[J]. Journal of Polymer Science Part B, 1988, 26(5): 1021-1033.
[21] PARK H B, KAMCEV J, ROBESON L M, et al.Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): 1138-1148.
[22] WALLACE W E, KARLICEK R F, IMAMURA H.Mechanism of hydrogen absorption by lanthanum-nickel (LaNi5)[J]. Journal of Physical Chemistry C, 1979, 83(13): 1708-1712.
[23] TIAN H, CHEN K, LIU H, et al.Magnetron radio frequency sputtering growth of LaNi5 thin films and their hydrogen- sensitive properties at room temperature and ordinary pressure[J]. Applied Surface Science, 2015, 331(1): 35-40.