[1] 郭建亭. 高温合金材料学[M]. 北京: 科学出版社, 2010, 109-111.
GUO Jianting.Materials Science and Engineering for Superalloys[M]. Beijing: Science Press, 2010: 109-111.
[2] MINER R V, CASTELLI M G.Hardening mechanisms in a dynamic strain aging alloy, HASTELLOY X, during isothermal and thermomechanical cyclic deformation[J]. Metallurgical Transactions A, 1992, 23(2): 551-561.
[3] WANG F.Mechanical property study on rapid additive layer manufacture Hastelloy X alloy by selective laser melting technology[J]. The International Journal Advanced Manufacturing Technology, 2012, 58(5/8): 545-551.
[4] MARCHESE G, BASILE G, BASSINI E, et al.Study of the microstructure and cracking mechanisms of Hastelloy X produced by laser powder bed fusion[J]. Materials, 2018, 11(1): 1-12.
[5] 王馨. 渗铝涂层对Cr20Ni80电热合金抗氧化性能研究及失效分析[D]. 兰州: 兰州理工大学, 2020.
WANG Xin.Study on oxidation resistance and failure analysis of Cr20Ni80 electrothermal alloy with aluminized coating[D]. Lanzhou: Lanzhou University of Technology, 2020.
[6] 路超. GH4169金属粉末选区激光熔化成型工艺及性能研究[D]. 兰州: 兰州理工大学, 2017.
LU Chao.Research on process and property of selective laser melting with GH4169 metal powder[D]. Lanzhou: Lanzhou University of Technology, 2017.
[7] HUANG L, JIANG L, TOPPING T D, et al.In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure[J]. Acta Materialia, 2017, 122(1): 19-31.
[8] DADÉ M, MALAPLATE J, GARNIER J, et al.Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels[J]. Acta Materialia, 2017, 127(1): 165-177.
[9] MASSEY C P, DRYEPONDT S N, EDMONDSON P D, et al.Multiscale investigations of nanoprecipitate nucleation, growth, and coarsening in annealed low-Cr oxide dispersion strengthened FeCrAl powder[J]. Acta Materialia, 2018, 166(1): 1-17.
[10] BERMAN B.3-D printing: The new industrial revolution[J]. Business Horizons, 2012, 55(2): 155-162.
[11] DEBROY T, WEI H L, ZUBACK J S, et al.Additive manufacturing of metallic components-process, structure and properties[J]. Progress Materials Science, 2018, 92(1): 112-224.
[12] GU D, SHI X, POPRAWE R, et al. Material-structure- performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372(6545): eabg1487.
[13] HERZOG D, SEYDA V, WYCISK E, et al.Additive manufacturing of metals[J]. Acta Materialia, 2016, 117(1): 371-392.
[14] SANAEI N, FATEMI A.Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review[J]. Progress Materials Science, 2021, 117(1): 100724.
[15] SVETLIZKY D, DAS M, ZHENG B, et al.Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications[J]. Materials Today, 2021, 49(1): 271-295.
[16] ZHONG M, SUN H, LIU W, et al.Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy[J]. Scripta Materialia, 2005, 53(2): 159-164.
[17] GRIFFITHS S, TABASI H G, IVAS T, et al.Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy[J]. Additive Manufacturing, 2020, 36(1): 101443.
[18] ZHOU W, ZHU G, WANG R, et al.Inhibition of cracking by grain boundary modification in a non-weldable nickel-based superalloy processed by laser powder bed fusion[J]. Materials Science Engineering A, 2020, 791(1): 139745.
[19] CLOOTS M, UGGOWITZER P J, WEGENER K.Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles[J]. Materials and Design, 2016, 89(1): 770-784.
[20] HARRISON N J, TODD I, MUMTAZ K.Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: A fundamental alloy design approach[J]. Acta Materialia, 2015, 94(1): 59-68.
[21] BIDRON G, DOGHRI A, MALOT T, et al.Reduction of the hot cracking sensitivity of CM-247LC superalloy processed by laser cladding using induction preheating[J]. Journal of Materials Processing Technology, 2019, 277(1): 116461.
[22] TANG Y T, PANWISAWAS C, GHOUSSOUB J N, et al.Alloys-By-Design: Application to New Superalloys for Additive Manufacturing[J]. Acta Materialia, 2020, 202(1): 417-436.
[23] HAN Q Q, GUYC, SETCHIR, et al.Additive manufacturing of high-strength crack-free Ni-based Hastelloy X superalloy[J]. Additive Manufacturing, 30(1): 1-11.
[24] TOMUS D, ROMETSCH P A, HEILMAIER M, et al.Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting[J]. Additive Manufacturing, 2017, 16(1): 65-72.
[25] KOUS. A criterion for cracking during solidification[J]. Acta Materialia, 2015, 88(1): 366-374.
[26] CONIGLIO N, CROSS C E.Initiation and growth mechanisms for weld solidification cracking[J]. International Materials Reviews, 2013, 58(7): 375-397.
[27] WANG N, MOKADEM S, RAPPAZ M, et al.Solidification cracking of superalloy single- and bi-crystals[J]. Acta Materialia, 2004, 52(11): 3173-3182.
[28] KITANO H, TSUJII M, KUSANO M, et al.Effect of plastic strain on the solidification cracking of Hastelloy-X in the selective laser melting process[J]. Additive Manufacturing, 2021, 37(1): 101742.
[29] MONTERO-SISTIAGA M L, POURBABAK S, VAN HUMBEECK J, et al. Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting)[J]. Materials and Design, 2019, 165(1): 107598.
[30] OJO O A, RICHARDS N L, CHATURVEDI M C.Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy[J]. Scripta Materialia, 2004, 50(5): 641-646.
[31] ZHANG W, LIU F, LIU F, et al.Microstructural evolution and cracking behavior of Hastelloy X superalloy fabricated by laser directed energy deposition[J]. Journal of Alloys and Compounds, 2022, 905(1): 164179.
[32] CHANDRA S, TAN X, NARAYAN R L, et al.A generalised hot cracking criterion for nickel-based superalloys additively manufactured by electron beam melting[J]. Additive Manufacturing, 2020(1): 101633.
[33] CHAUVET E, KONTIS P, GAULT B, et al.Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron beam melting[J]. Acta Materialia, 2017, 142(1): 82-94.
[34] RONG P, WANG N, WANG L, et al.The influence of grain boundary angle on the hot cracking of single crystal superalloy DD6[J]. Journal of Alloys and Compounds, 2016, 676(1): 181-186.
[35] JIAN Z, SINGER R F.Effect of grain-boundary characteristics on castability of nickel-base superalloys[J]. Metallurgical and Materials Transactions A, 2004, 35(3): 939-946.
[36] ZHOU Y, VOLEK A, SINGER R F.Effect of grain boundary characteristics on hot tearing in directional solidification of superalloys[J]. Journal of Materials Research, 2006, 21(9): 2361-2370.
[37] BI J, LEI Z, CHEN Y, et al.Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion[J]. Journal of Materials Science and Technology, 2021, 69(1): 200-211.
[38] NI M, CHEN C, WANG X, et al.Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing[J]. Materials Science and Engineering A, 2017, 701(1): 344-351.
[39] YANG M, WANG L, YAN W.Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening[J]. Additive Manufacturing, 2021, 47(1): 102286.
[40] PHAM M S, DOVGYY B, HOOPER P A, et al.The role of side-branching in microstructure development in laser powder-bed fusion[J]. Nature Communications, 11(1): 14453.
[41] SONG B, DONG S, CODDET P, et al.Fabrication of NiCr alloy parts by selective laser melting: Columnar microstructure and anisotropic mechanical behavior[J]. Materials and Design, 2014, 53(1): 1-7.
[42] 谭树杰, 李多生, QIN Qinghua, 等. 激光3D打印80Ni20Cr合金的显微组织及力学性能[J]. 中国有色金属学报, 2017, 27(8): 1572-1579.
TAN Shujie, LI Duosheng, QIN Qinghua, et al.Microstructure and mechanical properties of 80Ni20Cr alloy manufactured by laser 3D printing technology[J]. The Chinses Journal of Nonferrous Metals, 2017, 27(8): 1572-1579.