首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

Cr、Zr微合金化超高强Al-Zn-Mg-Cu-Yb铸态合金的组织及腐蚀性能

  • 许永祥 ,
  • 方华婵 ,
  • 段志英 ,
  • 张茁 ,
  • 汪家瑜 ,
  • 朱梦真 ,
  • 朱凯 ,
  • 肖鹏
展开
  • 1.中南大学 粉末冶金国家重点实验室,长沙 410083;
    2.中南大学 高等研究中心,长沙 410083

收稿日期: 2022-04-01

  修回日期: 2022-06-12

  网络出版日期: 2022-11-15

基金资助

国家自然科学青年基金资助项目(51501228);湖南省自然科学基金资助项目(2015JJ3167);中南大学大型仪器设备共享基金资助项目(CSUZC202109);中南大学研究生自主创新项目(1053320192832)

Microstructure and corrosion properties of Cr and Zr microalloyed ultra-high strength Al-Zn-Mg-Cu-Yb as-cast alloy

  • XU Yongxiang ,
  • FANG Huachan ,
  • DUAN Zhiying ,
  • ZHANG Zhuo ,
  • WANG Jiayu ,
  • ZHU Mengzhen ,
  • ZHU Kai ,
  • XIAO Peng
Expand
  • 1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
    2. Advance Research Center, Central South University, Changsha 410083, China

Received date: 2022-04-01

  Revised date: 2022-06-12

  Online published: 2022-11-15

摘要

采用铸锭冶金法制备Cr、Zr微合金化Al-Zn-Mg-Cu-Yb合金。通过电化学测试和静置腐蚀实验,结合X射线衍射仪、金相显微镜、扫描电镜和透射电镜研究Cr、Zr微合金化Al-Zn-Mg-Cu-Yb合金中凝固结晶相的析出特征,及其对铸态合金腐蚀行为的影响机理。结果表明:3种铸态Al-Zn-Mg-Cu-Yb合金中的枝晶主要由Al2CuMg(S相)、Al8Cu4Yb和Mg(Zn,Cu,Al)2(Sigma相)组成,而Cr或Zr的添加导致Sigma相中Cu含量增多,Sigma相电位提高,枝晶与铝基体之间的电位差减小,从而改善了铸态合金的耐腐蚀性能。与Al-Zn-Mg-Cu-Yb和Al-Zn-Mg-Cu-Yb-Cr合金相比,Al-Zn-Mg-Cu-Yb-Zr合金具有更高的耐蚀性,腐蚀形式由沿枝晶腐蚀转变为均匀腐蚀。

本文引用格式

许永祥 , 方华婵 , 段志英 , 张茁 , 汪家瑜 , 朱梦真 , 朱凯 , 肖鹏 . Cr、Zr微合金化超高强Al-Zn-Mg-Cu-Yb铸态合金的组织及腐蚀性能[J]. 粉末冶金材料科学与工程, 2022 , 27(5) : 519 -531 . DOI: 10.19976/j.cnki.43-1448/TF.2022041

Abstract

Cr and Zr microalloyed Al-Zn-Mg-Cu-Yb alloys were prepared by ingot metallurgy. The precipitation characteristics of solidified crystalline phase in Cr or Zr microalloyed Al-Zn-Mg-Cu-Yb alloys and its influence mechanism on the corrosion behavior of the as-cast alloys were studied by electrochemical test and static corrosion experiment, combined with the observation and analysis of X-ray diffraction, optical microscope, scanning electron microscope and transmission electron microscope. The results show that the dendrites of the three as-cast Al-Zn-Mg-Cu-Yb alloys are mainly composed of Al2CuMg (S phase), Al8Cu4Yb and Mg(Zn,Cu,Al)2 (Sigma phase). The addition of Cr or Zr leads to the increase of Cu content in Sigma phase, the increase of potential of Sigma phase and the decrease of potential difference between dendrites and aluminum matrix, which can improve the corrosion properties of the as-cast alloys. Compared with Al-Zn-Mg-Cu-Yb and Al-Zn-Mg-Cu-Yb-Cr alloys, Al-Zn-Mg-Cu-Yb-Zr alloy has higher corrosion resistance, and the corrosion form changes from intergranular corrosion to uniform corrosion.

参考文献

[1] LI L B, LI R D, YUAN T C, et al.Microstructures and tensile properties of a selective laser melted Al-Zn-Mg-Cu(Al7075) alloy by Si and Zr microalloying[J]. Materials Science and Engineering A, 2020, 787: 139492.
[2] AZARNIYA A, TAHERI A K, TAHERI K K.Recent advances in ageing of 7xxx series aluminum alloys: a physical metallurgy perspective[J]. Journal of Alloys and Compounds, 2019, 781: 945-983.
[3] CHUNG T F, YANG Y L, SHIOJIRI M, et al.Intrinsic twin boundary of η-MgZn2 precipitates in the AA7050 aluminum alloy[J]. Procedia Manufacturing, 2019, 37: 201-206.
[4] LIAO Y G, HAN X Q, ZENG M X, et al.Influence of Cu on microstructure and tensile properties of 7xxx series aluminum alloy[J]. Materials and Design, 2015, 66: 581-586.
[5] 刘贵立, 方戈亮. Al-Zn-Mg-Cu超高强铝合金晶界偏聚与腐蚀机制研究[J]. 稀有金属材料与工程, 2009, 38(9): 1598-1601.
LIU Guili, FANG Geliang.Study on grain boundary segregation and corrosion mechanism of Al-Zn-Mg-Cu ultra-high strength aluminum alloy[J]. Rare Metal Materials and Engineering, 2009, 38(9): 1598-1601.
[6] YUAN D L, CHEN K H, CHEN S Y, et al.Enhancing stress corrosion cracking resistance of low Cu-containing Al-Zn-Mg- Cu alloys by slow quench rate[J]. Materials and Design, 2019, 164: 1-11.
[7] KNIGHT S P, BIRBILIS N, MUDDLE B C, et al.Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn- Mg-Cu alloys[J]. Corrosion Science, 2010, 52(12): 4073-4080.
[8] XIE P, CHEN S Y, CHEN K H, et al.Enhancing the stress corrosion cracking resistance of a low-Cu containing Al-Zn-Mg-Cu aluminum alloy by step-quench and aging heat treatment[J]. Corrosion Science, 2019, 161: 108184.
[9] XIAO Q F, HUANG J W, JIANG Y G, et al.Effects of minor Sc and Zr additions on mechanical properties and microstructure evolution of Al-Zn-Mg-Cu alloys[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(6):1429-1438.
[10] TANG C L, ZHOU D J.Precipitation hardening behavior of dilute binary Al-Yb alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2326-2330.
[11] WANG X, MA P K, MENG Z Y, et al.Effect of trace Cr alloying on centerline segregations in sub-rapid solidified Al-Mg-Si (AA6061) alloys fabricated by twin-roll casting[J]. Materials Science and Engineering A, 2021, 825: 141896.
[12] WANG M, HUANG L, CHEN K, et al.Influence of minor combined addition of Cr and Pr on microstructure, mechanical properties and corrosion behaviors of an ultrahigh strength Al-Zn-Mg-Cu-Zr alloy[J]. Micron, 2018, 104: 80-88.
[13] LI Y, LU B, YU W, et al.Two-stage homogenization of Al-Zn-Mg-Cu-Zr alloy processed by twin-roll casting to improve L12 Al3Zr precipitation, recrystallization resistance, and performance[J]. Journal of Alloys and Compounds, 2021, 882: 160789.
[14] LIU J, YAO P, ZHAO N Q, et al.Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys[J]. Journal of Alloys and Compounds, 2016, 657: 717-725.
[15] PENG G S, CHEN K H, FANG H C, et al.A study of nanoscale Al3(Zr,Yb) dispersoids structure and thermal stability in Al-Zr-Yb alloy[J]. Materials Science and Engineering A, 2012, 535: 311-315.
[16] YANG J J, NIE Z R, JIN T N.Effect of trace rare earth element Er on high pure Al[J]. Transactions of Nonferrous Metals Society of China, 2003(5): 1035-1039.
[17] WANG S H, MENG L G, YANG S J, et al.Microstructure of Al-Zn-Mg-Cu-Zr-0.5Er alloy under as-cast and homogenization conditions[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(7): 1449-1454.
[18] 雷越, 臧金鑫, 邢清源, 等. 第二级时效对7085铝合金厚板力学性能及晶间腐蚀性能的影响[J]. 有色金属工程, 2022, 12(1): 36-41.
LEI Yue, ZANG Jinxin, XING Qingyuan, et al.Effect of second stage aging on mechanical and intergranular corrosion properties of 7085 plate[J]. Nonferrous Metals Engineering, 2022, 12(1): 36-41.
[19] FANG H C, YANG H L, ZHU J M, et al.Effect of minor Cr, Mn, Zr or Ti on recrystallization, secondary phases and fracture behavior of Al-Zn-Mg-Cu-Yb alloys[J]. Rare Metal Materials and Engineering, 2020, 49(3): 797-810.
[20] MONDAL C, MUKHOPADHYAY A K.On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy[J]. Materials Science and Engineering A, 2005, 391(1/2): 367-376.
[21] PETSCHKE D, LOTTER F, STAAB T.Revisiting the crystal structure of the equilibrium S (Al2CuMg) phase in Al-Cu-Mg alloys using X-ray absorption spectroscopy (XAFS)[J]. Materialia, 2019, 6: 100341.
[22] 方华婵, 朱佳敏, 陈卓,等. 复合添加Yb,Zr,Ti对超高强Al-Zn-Mg-Cu合金组织和力学性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(2):176-187.
FANG Huachan, ZHU Jiamin, CHEN Zhuo, et al.Effect of Yb, Zr, Ti additions on the microstructure and mechanical properties of super-high strength Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(2): 176-187.
[23] 方华婵, 刘滩, 朱佳敏, 等. 微量镱和过渡元素对Al-Zn- Mg-Cu超强合金晶界特征和性能的影响[J]. 中国有色金属学报, 2019, 29(7): 1-12.
FANG Huachan, LIU Tan, ZHU Jiamin, et al.Effects of minor Yb and transition element on grain boundary character and properties of super strength Al-Zn-Mg-Cu alloys[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(7): 1-12.
[24] WANG H J, XU J, KANG Y L, et al.Study on inhomogeneous characteristics and optimize homogenization treatment parameter for large size DC ingots of Al-Zn-Mg-Cu alloys[J]. Journal of Alloys and Compounds, 2014, 585: 19-24.
[25] ZHAO Y X, LI H, HUANG Y C.The microstructures and mechanical properties of a highly alloyed Al-Zn-Mg-Cu alloy: The role of Cu concentration[J]. Journal of Materials Research and Technology, 2022, 18: 122-137.
[26] 陈卓, 方华婵, 祝昌军, 等. L12型Al3(Yb,Zr)相结构的第一性原理计算和实验研究[J]. 粉末冶金材料科学与工程, 2020, 25(1): 1-10.
CHEN Zhuo, FANG Huachan, ZHU Changjun, et al.First-principles calculations study and experimental results of L12-structured Al3(Yb,Zr) precipitate[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(1): 1-10.
[27] LIU X Y, LI M J, GAO F, et al.Effects of aging treatment on the intergranular corrosion behavior of Al-Cu-Mg-Ag alloy[J]. Journal of Alloys and Compounds, 2015, 639: 263-267.
[28] CHEN J F, FRABKEL G S, JIANG J T, et al.Effect of age-forming on corrosion properties of an Al-Zn-Mg-Cu alloy[J]. Materials and Corrosion, 2014, 65(7): 670-677.
[29] SONG F X, ZHANG X M, LIU S D, et al.The effect of quench rate and overageing temper on the corrosion behavior of AA7050[J]. Corrosion Science, 2014, 78:276-286.
[30] LI J F, CHEN W J, ZHAO X S, et al.Corrosion behavior of 2195 and 1420 Al-Li alloys in neutral 3.5%NaCl solution under tensile stress[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(5): 1171-1177.
[31] XIAO Y P, PAN Q L, LI W B, et al.Influence of retrogression and re-aging treatment on corrosion behaviour of an Al-Zn-Mg-Cu alloy[J]. Materials and Design, 2011, 32(4): 2149-2156.
[32] 唐剑, 王德满, 刘静安, 等. 铝合金熔炼与铸造技术[M]. 北京: 冶金工业出版社, 2009.
TANG Jian, WANG Deman, LIU Jing’an, et al.Aluminum Alloy Melting and Casting Technology[M]. Beijing: Metallurgical Industry Press, 2009.
[33] ROÓSZ A, HALDER E, EXNER H E. Numerical calculation of microsegregation in coarsened dendritic microstructures[J]. Materials Science and Technology, 1986, 11(2): 1149-1155.
[34] KOVACOVA K, GRMAN D.Distribution of magnesium in the crystallization interface in selected alloys of the binary system Al-Mg[J]. Kovove Materialy, 1979, 17(2): 144-151.
[35] WEI B, HERLACH D M, SOMMER F, et al. Rapid dendritic and eutectic solidification of undercooled Co-Mo alloys[J]. Materials Science and Engineering A, 1994, 181-182: 1150-1155.
[36] ZHANG Y, GAO K Y, WEN S P, et al.Determination of Er and Yb solvuses and trialuminide nucleation in Al-Er and Al-Yb alloys[J]. Journal of Alloys and Compounds, 2014, 590: 526-534.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn