以TiO2、碳黑为原料,抛尾Ti粉为活化剂,结合TG/DSC、XRD分析手段,研究抛尾Ti粉活化碳热还原氮化制备Ti(C,N)粉末的动力学和物相演变。采用Kissinger-Akahira-Sunose (KAS)方法计算未添加和添加抛尾Ti粉体系中Ti3O5转变为Ti(C,N)的活化能,分别为(5 053.34±683.64) kJ/mol和(4 485.46±687.33) kJ/mol,发现抛尾Ti粉可有效降低碳热还原氮化反应的活化能;碳热还原氮化过程的物相演变研究表明,800 ℃下Ti与TiO2反应直接生成Ti4O7,越过了传统未添加钛粉体系中的TinO2n-1(n>4)系列中间相转变过程,1 400 ℃保温0.5 h即可得单相Ti(C,N)。在1 750 ℃保温4 h成功制备了w(O)为0.34%、w(游离C)为0.33%,粒径1~2 μm的高品质Ti(C,N)粉末。
The kinetics and phase evolution of Ti(C,N) formation process by-carbothermal reduction and nitridation of titania (TiO2), carbon and tailing Ti powder as activator were investigated using TG/DSC, XRD. The Kissinger- Akahira-Sunose (KAS) method was used to calculate the activation energies that Ti3O5 reacted to form Ti(C,N) in the system without adding and adding tailing Ti powder, which were (5 053.34±683.64) kJ/mol and (4 485.46±687.33) kJ/mol respectively. The result indicated that tailing Ti could effectively reduce the activation energy of the carbothermal reduction and nitridation reaction; the phase evolution study of the process showed that Ti reacted with TiO2 to form Ti4O7 at 800 ℃, which directly surpassed the TinO2n-1(n>4),a series of intermediate phase transformation process, single-phase Ti(C,N) could be obtained by holding at 1 400 ℃ for 0.5 h; Finally, the oxygen content of 0.34%, the free carbon content of 0.33% and high-quality Ti(C,N) powder with a particle size of 1-2 μm was prepared at 1 750 ℃ for 4 h.
[1] YING P, MIAO H, PENG Z.Development of TiCN-based cermets: Mechanical properties and wear mechanism[J]. International Journal of Refractory Metals & Hard Materials, 2013, 39(7): 78-89.
[2] KRAL C, LENGAUER W, RAFAJA D, et al.Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides[J]. Journal of Alloys and Compounds, 1998, 265(1): 215-33.
[3] 吴学文. 碳氮化钛基金属陶瓷刀具材料的制备工艺与力学性能[D]. 厦门: 厦门理工学院, 2015.
WU Xuewen.Preparation processes and mechanical properties of titanium carbonitride-based cermet tool materials[D]. Xiamen: Xiamen University of Technology, 2015.
[4] LANDFRIED R, FRANK K, GADOW R, et al.Development of electrical discharge machinable ZTA ceramics with 24vol% of TiC, TiN, TiCN, TiB2 and WC as electrically conductive phase[J]. International Journal of Applied Ceramic Technology, 2012, 10(3): 509-518.
[5] ZHIGACH A N, LEIPUNSKY I O, KUSKOV M L, et al.Synthesis of pure titanium carbide and titanium carbide/hydride core-shell nanoparticles via the flow-levitation method, and their characterization[J]. Journal of Alloys and Compounds, 2020, 819: 153054-153061.
[6] BERGER L M.Application of hardmetals as thermal spray coatings[J]. International Journal of Refractory Metals & Hard Materials, 2015, 49: 350-364.
[7] BRKELMANN M, MCKEOWN M.Heavy copper wire bonding ready for industrial mass production[C]// International Symposium on 3D Power Electronics Integration and Manufacturing. Germany: HESSE MECHATRONICS, 2015: 399-405.
[8] HUANG J, MIAO Y, MENG Z, et al.Hot-pressed sintered Ca-α-Sialon ceramics with grains from short prismatic to elongated morphology synthesized via carbothermal reduction and nitridation[J]. Journal of Alloys and Compounds, 2018, 767: 90-97.
[9] WU K H, JING Y, JIAO S Q, et al.Preparations of titanium nitride, titanium carbonitride and titanium carbide via a two-step carbothermic reduction method[J]. Journal of Solid State Chemistry, 2019, 277: 793-803.
[10] BERGER L M, GRUNER W.Investigation of the effect of a nitrogen-containing atmosphere on the carbothermal reduction of titanium dioxide[J]. International Journal of Refractory Metals & Hard Materials, 2002, 20(3): 235-251.
[11] GOU H P, ZHANG G H, CHOU K C.Formation of submicrometer titanium carbide from a titanium dioxide encapsulated in phenolic resin[J]. Journal of Materials Science, 2016, 51(14): 7008-7015.
[12] KOC R, GLATZMAIER G C. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride, US5417952 A[P].1995-05-23.
[13] 李畅,卜亚杰, 郝剑涛, 等. 空气和氮气气氛下的钛粉反应特性研究[J]. 工业安全与环保, 2018, 44(7): 1-17.
LI Chang, PU Yajie, HAO Jiangtao, et al.Study on reaction characteristics of titanium powder in air and nitrogen atmosphere[J]. Industrial Safety and Environmental Protection, 2018, 44(7): 1-17.
[14] NADIMI H, SOLTANIEH M, SARPOOLAKY H.The formation mechanism of nanocrystalline TiC from KCl-LiCl molten salt medium[J]. Journal of Ceramics International, 2020, 46: 18725-18733.
[15] 何旭, 叶金文, 刘颖, 等. 开放体系下碳热还原法制备碳氮化钛粉末的研究[J]. 功能材料, 2009, 40(5): 771-773.
HE Xu, YE Jinwen, LIU Ying, et al.Preparation of titanium carbonitride powder by carbothermal reduction in open system[J]. Journal of Functional Materials, 2009, 40(5): 771-773.
[16] LIM A, CHIN B, JAWAD Z A, et al.Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method[J]. Procedia Engineering, 2016, 148: 1247-1251.
[17] CHEN J B, WANG Y H, LANG X M, et al.Evaluation of agricultural residues pyrolysis under non-isothermal conditions: Thermal behaviors, kinetics, and thermodynamics[J]. Bioresource Technology, 2017, 241: 340-348.
[18] SHARMA P, PANDEY O P.Thermal kinetics involved during the solid-state synthesis of Cr2AlC MAX phase[J]. Journal of Thermal Analysis and Calorimetry, 2020, 143(6): 3997-4008.
[19] 梁英教, 车荫昌. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1993.
LIANG Yingjiao, CHE Yinchang.Handbook of Thermodynamic Data for Inorganic Sances[M]. Shenyang: Northeastern University Press, 1993.
[20] PING C S, GHANI J A, RIZAL M, et al.Surface characterisation of TiCxN1-x coatings processed by cathodic arc physical vapour deposition: XPS and XRD analysis[J]. Surface and Interface Analysis, 2019, 51(7): 611-617.
[21] RAJABI A, HODGSON P, GHAZALI M J, et al.Challenges and solutions in the synthesis of nano-TiCN: a review[J]. Ceramics International, 2022, 48(7): 8921-8929.
[22] 余鹏飞, 叶金文, 刘颖, 等. 几种碳源对碳热还原氮化法制备Ti(C,N)粉末的影响[J]. 功能材料, 2011, 42(5): 850-853.
YU Pengfei, YE Jinwen, LIU Ying, et al.Effect of several carbon sources on preparation of Ti(C,N) powders by carbothermal reduction and nitridation[J]. Journal of Functional Materials, 2011, 42(5): 850-853.