首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
理论研究

Ag-Cu-Co体系的相图热力学研究

  • 毛学良 ,
  • 李晓静 ,
  • 刘树红 ,
  • 杜勇
展开
  • 中南大学 粉末冶金国家重点实验室,长沙 410083

收稿日期: 2022-03-30

  修回日期: 2022-06-07

  网络出版日期: 2022-11-15

基金资助

云南省贵金属基因工程重大科技项目(202002AB080001-1)

Thermodynamic investigation of the Ag-Cu-Co system

  • MAO Xueliang ,
  • LI Xiaojing ,
  • LIU Shuhong ,
  • DU Yong
Expand
  • State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Received date: 2022-03-30

  Revised date: 2022-06-07

  Online published: 2022-11-15

摘要

通过电感耦合等离子体发射光谱仪、电子探针显微分析仪和X射线衍射仪研究铸态及400 ℃、650 ℃退火态Ag-Cu-Co合金的相组成。结果表明,铸态和退火态Ag-Cu-Co合金中均未观测到Ag-Cu-Co三元化合物。400 ℃退火态合金中,Cu和Co在FCC(Ag)中的最大溶解度分别为9.78%和0.88%(摩尔分数,%,下同),Ag和Co在FCC(Cu)中以及Ag和Cu在HCP(Co)中的最大溶解度则分别为2.37%和0.98%,以及0.22%和4.15%。而650 ℃退火态合金中,Cu和Co在FCC(Ag)中,Ag和Co在FCC(Cu)中以及Ag和Cu在FCC(Co)中的最大溶解度分别为15.74%和0.97%,3.69%和4.47%,以及0.15%和7.48%。采用CALPHAD(calculation of phase diagram)方法,基于文献报道的Ag-Cu、Ag-Co和Cu-Co二元系的热力学参数外推,获得了Ag-Cu-Co三元体系的热力学数据库。使用该数据库计算Ag-Cu-Co体系400 ℃和650 ℃等温截面、液相面投影图及三元合金的凝固路径,计算结果与实验数据一致,说明CALPHAD外推获得的三元体系热力学描述的准确性。

本文引用格式

毛学良 , 李晓静 , 刘树红 , 杜勇 . Ag-Cu-Co体系的相图热力学研究[J]. 粉末冶金材料科学与工程, 2022 , 27(5) : 460 -470 . DOI: 10.19976/j.cnki.43-1448/TF.2022036

Abstract

Phase constituents of the Ag-Cu-Co alloys in as-cast and annealed at 400 ℃ and 650 ℃ were studied by inductively coupled plasma optical emission spectrometer (ICP-OES), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). The results show that no ternary compound is observed in this work. At 400 ℃, the maximum solubility of Cu and Co in FCC(Ag), Ag and Co in FCC(Cu) and Ag and Cu in HCP(Co) are determined to be 10.08% and 1.43%, 2.37% and 0.98%, as well as 0.22% and 4.15% (mole fraction, %, the same below), respectively. While at 650 ℃, the maximum solubility of Cu and Co in FCC(Ag), Ag and Co in FCC(Cu) and Ag and Cu in FCC(Co) are determined to be 15.74% and 0.97%, 3.69% and 4.47% as well as 0.15% and 7.48%, respectively. Thermodynamic database of the Ag-Cu-Co system is extrapolated from the reported thermodynamic description of the three sub-binary systems of Ag-Cu, Ag-Co and Cu-Co in literature, based on the CALPHAD (calculation of phase diagram) approach. Using the presently obtained database, the isothermal sections at 400 ℃ and 650 ℃, the liquidus projection as well as the solidification path of the Ag-Cu-Co system are calculated. The reasonable agreement between the calculations and measurement indicates the accuracy of the thermodynamic description of the Ag-Cu-Co system obtained by extrapolation using the CALPHAD approach.

参考文献

[1] 宁远涛, 郭根生, 李永年. 贵金属焊料及焊膏[J]. 贵金属, 1989(4): 67-72.
NING Yuantao, GUO Gensheng, LI Yongnian.Precious metal solders and solder pastes[J]. Precious Metals, 1989(4): 67-72.
[2] 侯江涛, 孙华为, 刘洁, 等. 表面粗糙度对高纯银带抗腐蚀及电阻率的影响[J]. 贵金属, 2017, 38(B10): 60-62.
HOU Jiangtao, SUN Huawei, LIU Jie, et al.Effect of surface roughness on corrosion resistance and resistivity of high purity silver ribbon[J]. Precious Metals, 2017, 38(B10): 60-62.
[3] 郑苗, 刘薇, 王晓蓉, 等. 机械合金化法制备Ag-Cu基中温合金钎料工艺研究[J]. 材料科学与工艺, 2016, 24(6): 20-26.
ZHENG Miao, LIU Wei, WANG Xiaorong, et al.Technical study on Ag-Cu based medium temperature solder prepared by mechanical alloying method[J]. Materials Science and Technology, 2016, 24(6): 20-26.
[4] 乔芝郁, 郝士明. 相图计算研究的进展[J]. 材料与冶金学报, 2005, 4(2): 83-91.
QIAO Zhiyu, HAO Shiming.New progress of CALPHAD approach[J]. Journal of Materials and Metallurgy, 2005, 4(2): 83-91.
[5] 郝士明. 作为材料设计基础的相图研究[J]. 材料与冶金学报, 2002, 1(1): 3-8.
HAO Shiming.Study of phase diagram regard as foundation of material design[J]. Journal of Materials and Metallurgy, 2002, 1(1): 3-8.
[6] 徐祖耀. 材料热力学[M]. 北京: 科学出版社, 2009.
XU Zuyao.Thermodynamics of Materials[M]. Beijing: Science Press, 2009.
[7] KING H.Crystal structures of the elements at 25 ℃[J]. Bulletin of Alloy Phase Diagrams, 1981, 2(3): 401-402.
[8] NISHIZAWA T, ISHIDA K.The Co (cobalt) system[J]. Bulletin of Alloy Phase Diagrams, 1983, 4(4): 387-390.
[9] HANSEN M, ANDERKO K, SALZBERG H.Constitution of binary alloys[J]. Journal of the Electrochemical Society, 1958, 105(12): 260-261.
[10] BERNARDINI J, COMBE-BRUN A, CABANE J.Diffusion et solubilite du cobalt dans l’argent[J]. Scripta Metallurgica, 1970, 4(12): 985-989.
[11] KARAKAYA I, THOMPSON W T.The Ag-Co (silver-cobalt) system[J]. Bulletin of Alloy Phase Diagrams, 1986, 7(3): 259-263.
[12] DINSDAL A D.SGTE data for pure elements[J]. Calphad, 1991, 15(4): 317-425.
[13] ZHU W, LIU H, WANG J, et al.Thermodynamic assessment of the Sn-Ag-Co system and solidification simulation of the ternary alloy[J]. Journal of Alloys and Compounds, 2009, 481(1/2): 503-508.
[14] FRIEDICH K, LEROUX A.Copper, silver, and lead[J]. Metallurgie, 1907, 4: 293-315.
[15] BRONIEWSKI W, KOSTACZ S.On the alloys of Ag-Cu[J]. Chemistry Report,1932, 194: 973-975.
[16] CHASTON J.Annotated Equilibrium Diagram Series[M]. Lodon: The Metal Society, the Institute of Metals Lodon, 1953.
[17] SUBRAMANIAN P, PEREPEZKO J.The Ag-Cu (silver-copper) system[J]. Journal of Phase Equilibria, 1993, 14(1): 62-75.
[18] BAHARI Z, ELGADI M, RIVET J, et al.Experimental study of the ternary Ag-Cu-In phase diagram[J]. Journal of alloys and compounds, 2009, 477(1): 152-165.
[19] ORIANI R, MURPHY W.Heats of formation of liquid alloys at 1100°C by a simple reaction calorimeter[J]. Journal of Physical Chemistry, 1958, 62(2): 199-202.
[20] ITAGAKI K, YAZAWA A.Heats of mixing in liquid copper or gold binary alloys[J]. Materials Transactions Jim, 1975, 16(11): 679-686.
[21] KLEPPA O, WATANABE S.Thermochemistry of alloys of transition metals: part III. Copper-silver, -titanium, -zirconium, and-hafnium at 1373 K[J]. Metallurgical Transactions B, 1982, 13(3): 391-401.
[22] DOBOVISEK B, PAULIN A.Porocilo O kalorimetricnih meritvah Z DTA pri visokih temperaturah[J]. Mining Metals Quarterly, 1962, 3: 27-32.
[23] FITZNER K, GUO Q, WANG J, et al.Enthalpies of liquid-liquid mixing in the systems Cu-Ag, Cu-Au and Ag-Au by using an in-situ mixing device in a high temperature single-unit differential calorimeter[J]. Journal of Alloys and Compounds, 1999, 291(1/2): 190-200.
[24] WITUSIEWICZ V T, HECHT U, FRIES S G, et al.The Ag-Al-Cu system: Part I: reassessment of the constituent binaries on the basis of new experimental data[J]. Journal of Alloys and Compounds, 2004, 385(1/2): 133-143.
[25] HE X, WANG H, LIU H, et al.Thermodynamic description of the Cu-Ag-Zr system[J]. Calphad, 2006, 30(4): 367-374.
[26] HASHIMOTO U.The equilibrium diagram of the Co-Cu system[J]. Journal of the Japan Institute of Metals A, 1937, 1(1): 19-26.
[27] TIMBERG L, TOGURI J, AZAKAMI T.A thermodynamic study of copper-iron and copper-cobalt liquid alloys by mass spectrometry[J]. Metallurgical Transactions B, 1981, 12(2): 275-279.
[28] TASKINEN P.Activities and thermodynamic properties of molten Co-Cu alloys[J]. International Journal of Materials Research, 1982, 73(7): 445-450.
[29] TURCHANIN M A.Enthalpies of formation of copper liquid alloys with iron, cobalt, and nickel[J]. Izvestiya Akademii Nauk SSSR. Metally, 1995, 5: 12-19.
[30] PALUMBO M, CURIOTTO S, BATTEZZATI L.Thermodynamic analysis of the stable and metastable Co-Cu and Co-Cu-Fe phase diagrams[J]. Calphad, 2006, 30(2): 171-178.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn