构筑4种不同梯度纳米结构的多晶铝原子结构模型,采用分子动力学方法对其进行结构弛豫与剪切变形的计算模拟,获得剪切形变过程中的位错演变和晶粒原子结构,研究在同一变形条件下不同梯度纳米结构多晶铝的晶粒形变机制和剪切变形过程中微观结构的变化,并研究其力学性能。结果表明,在剪切形变过程的初始及中间阶段,不同梯度纳米结构的形变机制基本一致,都发生大量位错运动并塞积在晶界处,而后穿过晶界,最终在晶粒表面释放。在变形过程的中后期,不同梯度纳米结构则表现不一样。其中剪切强度较大的结构,剪切形变后不存在贯穿多个晶粒的剪切带,且部分粗晶粒由于晶粒取向与剪切方向差异较大和晶粒旋转等原因分解为几个较小的晶粒,而细晶粒则无明显变化。剪切强度较小的结构在剪切形变过程中由于位错塞积与释放及晶界的相互连接而形成贯穿剪切带,严重影响剪切强度。
Gradient nanopolycrystalline structured metals are receiving increasing attention due to their unique plastic deformation mechanism and possible mechanical property enhancement. In this paper, the effect of different gradient nanostructures on the shear deformation behavior is investigated using a molecular dynamics approach. By comparing the dislocation evolution and atomic structure of grains during shear deformation of different gradient nanostructures, it is found that the deformation mechanisms of different gradient nanostructures are basically the same in the initial and intermediate stages of shear deformation process, with a large number of dislocations moving and accumulating at the grain boundaries, and then passing through the grain boundaries and finally releasing at the grain surface. In the middle and later stages of the deformation process, the different gradient nanostructures behave differently. For structures with higher shear strength, there is no shear band through multiple grains after shear deformation, and some of the coarse grains are broken into several smaller grains due to the large difference between grain orientation and shear direction and grain rotation, while the fine grains do not change significantly. The shear strength of the smaller structures is seriously affected by the shear bands formed during shear deformation due to dislocation plugging and release and interconnection of grain boundaries.
[1] 周昊飞. 梯度纳米结构金属力学性能, 变形机理和多尺度计算研究进展[J]. 固体力学学报, 2019, 40(3): 193-212.
ZHOU Haofei.Progress in mechanical properties of gradient nanostructured metals, deformation mechanisms and multi-scale calculations[J]. Chinese Journal of Solid Mechanics, 2019, 40(3): 193-212.
[2] LI X, LU L, LI J, et al.Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys[J]. Nature Reviews Materials, 2020, 5(9): 706-723.
[3] 卢柯. 梯度纳米结构材料[J]. 金属学报, 2015, 51(1): 1-10.
LU Ke.Gradient nanostructured materials[J]. Acta Metallurgica Sinica, 2015, 51: 1-10.
[4] FANG T H, LI W L, TAO N R, et al.Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science, 2011, 331(6024): 1587-1590.
[5] LEE Z, WITKIN D B, LAVERNIA E J, et al.Bimodal structured bulk nanocrystalline Al-7.5 Mg alloy[J]. MRS Online Proceedings Library, 2003: 791-799.
[6] LIU Y, LIU M, CHEN X, et al.Effect of Mg on microstructure and mechanical properties of Al-Mg alloys produced by high pressure torsion[J]. Scripta Materialia, 2019, 159: 137-141.
[7] CAO H, YE X, LI H, et al.Microstructure, mechanical and tribological properties of multilayer Ti-DLC thick films on Al alloys by filtered cathodic vacuum arc technology[J]. Materials & Design, 2021, 198: 109320.
[8] KULKARNI A R, SHUKLA A K, PRABU S M, et al.Investigations on enhancing the surface mechanical and tribological properties of A356 Al alloy using pulsed laser-assisted nitriding[J]. Applied Surface Science, 2021, 540: 148361.
[9] LIU M, ZHENG R, LI J, et al.Achieving ultrahigh tensile strength of 1 GPa in a hierarchical nanostructured 2024 Al alloy[J]. Materials Science and Engineering A, 2020, 788: 139576.
[10] LIU P, HU J Y, LI H X, et al.Effect of heat treatment on microstructure, hardness and corrosion resistance of 7075 Al alloys fabricated by SLM[J]. Journal of Manufacturing Processes, 2020, 60: 578-585.
[11] 张亮, 李茂军, 司乃潮. 复合热处理对7075铝合金组织和力学性能的影响[J]. 有色金属工程, 2019, 9(9): 93-98.
ZHANG Liang, LI Maojun, SI Naichao.Effect of composite heat treatment on the organization and mechanical properties of 7075 aluminum alloy[J]. Nonferrous Metals Engineering, 2019, 9(9): 93-98.
[12] 张宏辉, 李旭, 项胜前, 等. 6XXX 系变形铝合金的合金化原理和生产应用[J]. 轻合金加工技术, 2012, 40(3): 12-17.
ZHANG Honghui, LI Xu, XIANG Shengqian, et al.Alloying principles and production applications of 6XXX series deformed aluminum alloys[J]. Light Alloy Fabrication Technology, 2012, 40(3): 12-17.
[13] OVID'KO I A, VALIEV R Z, ZHU Y T. Review on superior strength and enhanced ductility of metallic nanomaterials[J]. Progress in materials science, 2018, 94: 462-540.
[14] SABIROV I, MURASHKIN M Y, VALIEV R.Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development[J]. Materials Science and Engineering A, 2013, 560: 1-24.
[15] BOBRUK E V, MURASHKIN M Y, KAZYKHANOV V U, et al.Superplastic behavior at lower temperatures of high‐strength ultrafine‐grained Al alloy 7475[J]. Advanced Engineering Materials, 2019, 21(1): 1800094.
[16] CHENG Z, ZHOU H, LU Q, et al. Extra strengthening and work hardening in gradient nanotwinned metals[J]. Science, 2018, 362(6414): eaau1925.
[17] ZHOU K, ZHANG T, LIU B, et al.Molecular dynamics simulations of tensile deformation of gradient nano-grained copper film[J]. Computational Materials Science, 2018, 142: 389-394.
[18] AURENHAMMER F.Voronoi diagrams-a survey of a fundamental geometric data structure[J]. ACM Computing Surveys (CSUR), 1991, 23(3): 345-405.
[19] STUKOWSKI A.Structure identification methods for atomistic simulations of crystalline materials[J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(4): 045021.
[20] PLIMPTON S.Fast parallel algorithms for short-range molecular dynamics[J]. Journal of computational physics, 1995, 117(1): 1-19.
[21] JIN H S, SONG P, JON C G, et al.Thermodynamic properties of FCC metals using reparameterized MEAM potentials[J]. Indian Journal of Physics, 2021, 95(12): 2553-2565.
[22] JELINEK B, GROH S, HORSTEMEYER M F, et al.Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys[J]. Physical Review B, 2012, 85(24): 245102.
[23] STUKOWSKI A.Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012.
[24] STUKOWSKI A, ALBE K.Extracting dislocations and non-dislocation crystal defects from atomistic simulation data[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(8): 085001.
[25] ZHAO J, LU X, YUAN F, et al.Multiple mechanism based constitutive modeling of gradient nanograined material[J]. International Journal of Plasticity, 2020, 125: 314-330.