首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

电磁发射CuCrZr轨道的沉积层特征与磨损机理

  • 李郁兴 ,
  • 姚萍屏 ,
  • 李专 ,
  • 周海滨 ,
  • 王兴 ,
  • 赵一博 ,
  • 康丽 ,
  • 邓敏文
展开
  • 中南大学 粉末冶金国家重点实验室,长沙 410083

收稿日期: 2022-03-15

  修回日期: 2022-04-25

  网络出版日期: 2022-05-30

基金资助

国家自然科学基金重点项目(92166202); 中南大学研究生自主探索创新项目(1053320192411)

Deposition characteristics and wear mechanism of CuCrZr electromagnetic launch rail

  • LI Yuxing ,
  • YAO Pingping ,
  • LI Zhuan ,
  • ZHOU Haibin ,
  • WANG Xing ,
  • ZHAO Yibo ,
  • KANG Li ,
  • DENG Minwen
Expand
  • State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Received date: 2022-03-15

  Revised date: 2022-04-25

  Online published: 2022-05-30

摘要

对电磁发射实验后的CuCrZr 合金轨道进行拆解,结合扫描电镜、X射线能谱、X射线衍射、X射线光电子能谱及电子背散射衍射等,对轨道表面沿发射方向4个区域的表面沉积层特征和磨损机理进行研究。结果表明,大部分轨道表面被沉积层覆盖,沉积层的厚度沿发射方向由薄变厚再变薄,最厚处的厚度达65 μm,沉积层的主要成分为Cu、Al、Al2O3和Al4Cu9等。轨道表面出现剥落、犁沟与流水状组织,呈现附着磨屑、孔洞、塞积和胞状枝晶等典型特征,表现出机械和电气磨损的混合状态。不同区域的沉积层特征差别明显,包括厚度、孔洞尺寸及数量、沉积层内部的微观结构,以及裂纹和表面形貌等。沉积层和轨道之间的界面发生扩散行为,形成扩散界面。沉积层的晶粒取向垂直于轨道表面。

本文引用格式

李郁兴 , 姚萍屏 , 李专 , 周海滨 , 王兴 , 赵一博 , 康丽 , 邓敏文 . 电磁发射CuCrZr轨道的沉积层特征与磨损机理[J]. 粉末冶金材料科学与工程, 2022 , 27(4) : 409 -418 . DOI: 10.19976/j.cnki.43-1448/TF.2022023

Abstract

The dismantling study on the CuCrZr alloy orbital after the electromagnetic emission experiment was carried out. Combined with canning electron microscopy (SEM), energy X-ray spectroscopy (EDS), X-ray diffraction (XRD), photoelectron spectroscopy (XPS) and electron backscatter diffraction (EBSD) etc., the surface of the orbital surface in four regions along the emission direction was analyzed. The deposition characteristics and wear mechanism were studied. The results show that most of the rail surface is covered by deposition. The thickness of the deposition layer tends to be thin to thick, and then to thin again in the second half of rail, and the thickest position reaches 65 μm. The main components of the deposition are Cu, Al, Al2O3 and Al4Cu9, etc. There are some typical features in the deposition layer, including spalling, grooving, water-like structure, surface-attached wear debris, pores, packed pores and cellular-dendrites, which shows a mixed state of mechanical and electrical wear. The characteristics of the deposition layer in different regions are obviously different, including thickness, size and number of pores, microstructure inside the deposition, cracks, surface morphologies, etc. Diffusion occures at the interface between the deposition layer and the rail, forming a diffusion interface. And the grain orientation of the deposition layer is perpendicular to the rail surface.

参考文献

[1] 苏子舟, 国伟, 张涛, 等. 电磁轨道炮技术[M]. 北京: 国防工业出版社: 2019: 12-13.
SU Zizhou, GUO Wei, ZHANG Tao, et al.Electromagnetic Railgun Technology[M]. Beijing: National Defense Industry Press: 2019: 12-13.
[2] XIE H B, YANG H Y, YU J, et al.Research progress on advanced rail materials for electromagnetic railgun technology[J]. Defence Technology, 2021,17(2): 429-439.
[3] PERSAD C.Railgun tribology-chemical reactions between contacts[J]. IEEE Transaction on Magnetics, 2007, 43(1): 391-396.
[4] WATT T, MOTES D T.The effects of surface coatings on the onset of rail gouging[J]. IEEE Transaction on Plasma Science, 2011, 39(1): 168-173.
[5] 肖铮. 电枢-轨道载流滑动接触面摩擦磨损研究[D]. 武汉: 华中科技大学, 2012: 37-39.
XIAO Zheng.Friction and wear behavior of armature-rail sliding electrical contact surface[D]. Wuhan: Huazhong University of Science and Technology, 2012: 37-39.
[6] COOPER K P, JONES H N, MEGER R A.Analysis of railgun barrel material[J]. IEEE Transaction on Magnetics, 2007, 43(1): 120-125.
[7] DUTTA I, DELANEY L, CLEVELAND B, et al.Electric- current-induced liquid Al deposition, reaction, and flow on Cu rails at rail-armature contacts in railguns[J]. IEEE Transaction on Magnetics, 2009, 45(1): 272-277.
[8] MACHADO B I, MURR L E, MARTINEZ E, et al.Materials characterization of railgun erosion phenomena[J]. Material Science Engineering A, 2011, 528(25/26): 7552-7559.
[9] COOPER K P, JONES H N, MEGER R A.Analysis of railgun barrel material[J]. IEEE Transaction on Magnetics, 2007, 43(1): 120-125.
[10] 高翔. 电磁轨道炮枢轨磨损特性分析[D]. 秦皇岛: 燕山大学, 2020: 17-26.
GAO Xiang.Analysis of the wear characteristics of the rail-armature of electromagnetic railgun[D]. Qinhuangdao: Yanshan University, 2020: 17-26.
[11] 冯勇. 电磁发射装置电枢轨道摩擦磨损研究[D]. 秦皇岛: 燕山大学, 2018: 21-29.
FENG Yong, Research on the frictional wear of armature and rail in electromagnetic launcher[D]. Qinhuangdao: Yanshan University, 2018: 21-29.
[12] PERSAD C, CASTRO Z.Railgun tribology: characterization and control of multishot wear debris[J]. IEEE Transaction on Magnetics, 2007, 43(1): 173-177.
[13] 黄伟, 杨黎明, 史戈宁, 等. 电磁发射条件下CuCrZr 合金材料轨道损伤行为研究[J]. 兵工学报, 2020, 41(5): 858-864.
HUANG Wei, YANG Liming, SHI Gening, et al.Damage behavior of CuCrZr alloy rail during electromagnetic launching[J]. Acta Armamentar II, 2020, 41(5): 858-864.
[14] 黄伟, 杨黎明, 史戈宁, 等. 载流摩擦条件下CuCrZr 合金表面组织演变规律[J]. 稀有金属, 2020, 44(7): 687-696.
HUANG Wei, YANG Liming, SHI Gening, et al.Surface microstructure evolution of CuCrZr alloy under current-carrying friction[J]. Chinese Journal of Rare Metals, 2020, 44(7): 687-696.
[15] 高翔, 张晖辉, 刘畅, 等. 考虑接触电阻的电磁发射装置温度场分析[J]. 兵器材料科学与工程, 2020, 43(3): 59-64.
GAO Xiang, ZHANG Huihui, LIU Chang, et al.Temperature field analysis of electromagnetic launcher under consideration of contact resistance[J]. Ordnance Material Science and Engineering, 2020, 43(3): 59-64.
[16] 卢铜钢, 刘峰, 高翔, 等. 洛伦兹力与温度场作用下枢轨摩擦磨损特性[J]. 摩擦学学报, 2021, 41(4): 474-483.
LU Tonggang, LIU Feng, GAO Xiang, et al.Wear characteristics between aramture and rails under the action of lorentz force and temperature field[J]. Tribology, 2021, 41(4): 474-483.
[17] ZHENG R G, ZHAN Z J, WANG W K.Wear behavior of Cu-La2O3 composite with or without electrical current[J]. Wear, 2010, 268(1/2): 72-76.
[18] 黄增阳. 铜/铝/铜复合箔的制备及其界面行为[D]. 沈阳: 东北大学, 2013: 10-11.
HUANG Zengyang.The preparation and interface behaviors of Cu/Al/Cu composite foil[D]. Shenyang: Northeastern University, 2013: 10-11.
[19] 曹飞. Al/Cu双金属复层材料界面扩散行为及微观组织演变[D]. 大连: 大连理工大学, 2018: 7-12.
CAO Fei.Diffusion behavior and microstructural evolution on interfaces in Al/Cu bimetal[D]. Dalian: Dalian University of Technology, 2018: 7-12.
[20] 武晓康, 鲁军勇, 李玉, 等. 电磁发射中导轨温度时空分布规律的实验研究[J]. 高电压技术, 2018, 44(6): 1982-1987.
WU Xiaokang, LU Junyong, LI Yu, et al.Experimental study on temporal and spatial distribution of rails temperature in electromagnetic launch[J]. High Voltage Engineering, 2018, 44(6): 1982-1987.
[21] BESSON R, AVETTAND-FENOEL M N, THUINET L, et al. Mechanisms of formation of Al4Cu9 during mechanical alloying: an experimental study[J]. Acta Materialia, 2015, 87(1): 216-224.
[22] RACHEL M G, CHADEE P.The response of different copper alloys as rail contacts at the breech of an electromagnetic launcher[J]. IEEE Transactions on Magnetics, 2001, 37(1): 263-268.
[23] 钟爱文, 姚萍屏, 肖叶龙, 等. 真空常温下空间用铜基粉末冶金摩擦材料的摩擦学行为及可靠性寿命[J]. 粉末冶金材料科学与工程, 2017, 23(1): 110-118.
ZHONG Aiwen, YAO Pingping, XIAO Yelong, et al.Tribological behaviors and reliability life of Cu-based friction materials for space applications in vacuum at room temperature[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 23(1): 110-118.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn