首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

3D打印羰基铁粉/聚二甲基硅氧烷柔性复合材料的吸波性能

  • 张雪婷 ,
  • 周毅 ,
  • 肖威 ,
  • 田兆霞 ,
  • 刘丰华
展开
  • 1.太原科技大学 材料科学与工程学院,太原 030024;
    2.中国科学院 宁波材料技术与工程研究所,浙江省增材制造材料重点实验室,宁波 315201

收稿日期: 2022-03-13

  修回日期: 2022-05-04

  网络出版日期: 2022-06-01

基金资助

江苏省产业前瞻与关键核心技术项目(BE2019072); 甘肃省技术创新引导计划区域科技合作专项(ZOJK10QA579)

Microwave absorbing properties of 3D printed carbonyl powder/polydimethylsiloxane flexible composite

  • ZHANG Xueting ,
  • ZHOU Yi ,
  • XIAO Wei ,
  • TIAN Zhaoxia ,
  • LIU Fenghua
Expand
  • 1. School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
    2. Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China

Received date: 2022-03-13

  Revised date: 2022-05-04

  Online published: 2022-06-01

摘要

分别以片状羰基铁粉(flake carbonyl iron, FCI)和球状羰基铁粉(spherical carbonyl iron, SCI)作吸波剂,与聚二甲基硅氧烷(polydimethylsioxlane, PDMS)混合制备成打印墨水,采用墨水直写3D打印工艺制备羰基铁粉/聚二甲基硅氧烷(CIP/PDMS)柔性复合吸波材料。研究羰基铁粉(carbonyl iron powder, CIP)的形貌和含量对墨水流变行为和3D直写打印工艺的影响,并通过CST Studio Suite电磁仿真软件研究CIP/PDMS复合吸波材料的电磁反射损耗。结果表明:CIP含量越高,复合材料的吸波性能越好,w(FCI)为30%时FCI/PDMS复合材料具有最佳的吸波性能,厚度为1.8 mm时对频率为10.9 GHz的电磁波具有最强吸收峰,吸收峰值为–34.8 dB,有效吸收带宽(effective absorption bandwidth, EAB, 反射损耗<-10 dB)为4.8 GHz;w(SCI)为80%时SCI/PDMS复合材料具有最佳吸波性能,厚度为t=2.4 mm时对频率为7.3 GHz的电磁波具有最强吸收峰,吸收峰值为–41.5 dB,EAB为3.6 GHz。

本文引用格式

张雪婷 , 周毅 , 肖威 , 田兆霞 , 刘丰华 . 3D打印羰基铁粉/聚二甲基硅氧烷柔性复合材料的吸波性能[J]. 粉末冶金材料科学与工程, 2022 , 27(4) : 442 -452 . DOI: 10.19976/j.cnki.43-1448/TF.2022025

Abstract

The printing ink was prepared by mixing flake carbonyl iron powder (FCI) and spherical carbonyl iron powder (SCI) with polydimethylsiloxane (PDMS), respectively. The carbonyl iron powder/polydimethylsiloxane (CIP/PDMS) flexible composite microwave absorbing material was formed by 3D printing with ink direct writing. The effects of the morphology and content of carbonyl iron powder (CIP) on the rheological behavior of ink and 3D direct writing printing process were studied. The electromagnetic reflection loss of CIP/PDMS composite microwave absorbing material was studied as well by CST Studio Suite electromagnetic simulation software. The results show that the higher the CIP content, the better the microwave absorption performance of the composite. When w(FCI) is 30%, the FCI/PDMS composite has the best microwave absorption performance. When the thickness is 1.8 mm, it has the strongest absorption peak for the electromagnetic wave with frequency of 10.9 GHz, the peak value is -34.8 dB, and the effective absorption bandwidth (EAB, RL<-10 dB) is 4.8 GHz. When w(SCI) is 80%, SCI/PDMS composite has the best microwave absorption performance. When the thickness is 2.4 mm, it has the strongest absorption peak for electromagnetic wave with frequency of 7.3 GHz, the peak is -41.5 dB and EAB is 3.6 GHz.

参考文献

[1] 王可欣, 伏桂贤, 徐城春, 等. 电子通信技术中电磁场和电磁波的运用[J]. 中国新通信, 2020, 22(11): 109-109.
WANG Kexin, FU Guixian, XU Chengchun, et al.Application of electromagnetic field and electromagnetic wave in electronic communication technology[J]. China New Communication, 2020, 22(11): 109-109.
[2] KATO K.Photonics-assisted terahertz-wave beam steering and its application in secured wireless communication[J]. Photonics, 2022, 9(1): 9.
[3] PARK J R, NOE S O.Study on the improvement of laws related to the electromagnetic wave of mobile phones[J]. Journal of the Korea Society of Computer and Information, 2020, 25(10): 231-240.
[4] HARDELL L, CARLBERG M.Health risks from radiofrequency radiation, including 5G, should be assessed by experts with no conflicts of interest[J]. Oncology Letters, 2020, 20(4): 11876.
[5] BARTOSOVA K, NERUDA M, VOJTECH L.Methodology of studying effects of mobile phone radiation on organisms: technical aspects[J]. International Journal of Environmental Research and Public Health, 2021, 18(23): 12642.
[6] SUN F, LIU Q D, XU Y F, et al.Attapulgite modulated thorny nickel nanowires/graphene aerogel with excellent electromagnetic wave absorption performance[J]. Chemical Engineering Journal, 2021, 415: 128976.
[7] 王俊起. 基于智能穿戴设备的电磁兼容技术设计研究[J]. 电子制作, 2021(24): 26-29.
WANG Junqi.Research on electromagnetic compatibility technology design based on smart wearable devices[J]. Electronic Production, 2021(24): 26-29.
[8] SUN J, LI L J, YU R, et al.Synthesis and microwave absorption properties of sulfur-Free expanded graphite/Fe3O4 composites[J]. Molecules, 2020, 25(13): 3044.
[9] CAO M S, YANG J, SONG W L, et al.Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS Applied Materials and Interfaces, 2012, 4(12): 6949-6956.
[10] CACCIOTTI I, VALENTINI M, RAIO M, et al.Design and development of advanced BaTiO3/MWCNTs/PVDF multi- layered systems for microwave applications[J]. Composite Structures, 2019, 224: 111075.
[11] ZHOU W, HU X, BAI X, et al.Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-Poly(3, 4- ethylenedioxythiophene) microspheres[J]. ACS Applied Materials & Interfaces, 2011, 3(10): 3839-3845.
[12] SISTA K S, DWARAPUDI S, KUMAR D, et al.Carbonyl iron powders as absorption material for microwave interference shielding: A review[J]. Journal of Alloys & Compounds, 2021, 853: 157251.
[13] CHEN S W, TAN G G, GU X S, et al.Microwave absorbing properties of FeCrMoNiPBCSi amorphous powders composite[J]. Journal of Alloys and Compounds, 2017, 705: 309-313.
[14] WANG H Q, WANG M, ZHANG X C, et al.A new type of catalyst allows carbonyl iron powder to be coated with SiO2 for tuned microwave absorption[J]. Surfaces and Interfaces, 2020, 21: 100755.
[15] 李晓光, 吕华良, 姬广斌, 等. 球磨钢珠配比对片状羰基铁粉吸波性能影响的研究[J]. 航空材料学报, 2013, 33(5): 46-53.
LI Xiaoguang, LÜ Hualiang, JI Guangbin, et al.Study on the effect of ball milling steel ball ratio on the absorbing properties of flake carbonyl iron powder[J]. Journal of Aeronautical Materials, 2013, 33(5): 46-53.
[16] 卢明明, 刘甲, 宫元勋, 等. 不同形貌羰基铁的复合对电磁特性及吸波性能的影响[J]. 表面技术, 2020, 49(2): 95-99.
LU Mingming, LIU Jia, GONG Yuanxun, et al.Effects of compounding of carbonyl irons with different morphologies on electromagnetic properties and absorbing properties[J]. Surface Technology, 2020, 49(2): 95-99.
[17] 徐雪杰, 朱子才, 罗斌, 等. CNT/PDMS柔性传感材料的打印工艺及性能研究[J]. 机械工程学报, 2020, 56(15): 97-103.
XU Xuejie, ZHU Zicai, LUO Bin, et al.Research on printing process and properties of CNT/PDMS flexible sensing material[J]. Journal of Mechanical Engineering, 2020, 56(15): 97-103.
[18] ZHENG R H, CHEN Y X, CHI H, et al.3D printing of a polydimethylsiloxane/polytetrafluoroethylene composite elasto- mer and its application in a triboelectric nanogenerator[J]. ACS Applied Materials and Interfaces, 2020, 12(51): 57441-57449.
[19] 南博, 张海波, 贺跃辉. 适用于直写式3D打印陶瓷浆料的流变学性能研究[J]. 精密成形工程, 2021, 13(2): 1-6.
NAN Bo, ZHANG Haibo, HE Quehui.Research on rheological properties of ceramic paste suitable for direct writing 3D printing[J]. Precision Forming Engineering, 2021, 13(2): 1-6.
[20] 张磊, 田东斌, 伍权, 等. 基于多材料打印制备梯度结构电解电容器阳极块[J]. 稀有金属材料与工程, 2020, 49(11): 3909-3913.
ZHANG Lei, TIAN Dongbin, WU Quan, et al.Fabrication of anode blocks for gradient structured electrolytic capacitors based on multi-material printing[J]. Rare Metal Materials and Engineering, 2020, 49(11): 3909-3913.
[21] WANG Y, WILLENBACHER N.Phase-change-enabled, rapid, high-resolution direct ink writing of soft silicone[J]. Advanced Materials, 2022, 34(15): 2109240.
[22] OZBOLAT V, DEY M, AYAN B, et al.3D printing of PDMS improves its mechanical and cell adhesion properties[J]. ACS Biomaterials Science and Engineering, 2018, 4(2): 682-693.
[23] 杨平安. 面向磁控吸波涂层的Fe基复合材料制备及电磁性能研究[D]. 重庆: 重庆大学, 2017.
YANG Pingan.Preparation and electromagnetic properties of Fe-based composites for magnetron absorbing coatings[D]. Chongqing: Chongqing University, 2017.
[24] ROCHA V G, SAIZ E, TIRICHENKO I S, et al.Direct ink writing advances in multi-material structures for a sustainable future[J]. Journal of Materials Chemistry A, 2020, 8(31): 15646-15657.
[25] LIU J, MCKEON L, GARCIA J, et al.Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding[J]. Advanced Materials, 2022, 34(5): 2106253.
[26] 钟锦鹏. Y2Co8F9/PDMS复合材料的微波吸收性能研究[J]. 兵器材料科学与工程, 2021, 44(3): 108-113.
ZHONG Jinpeng.Study on microwave absorption properties of Y2Co8F9/PDMS composites[J]. Ordnance Materials Science and Engineering, 2021, 44(3): 108-113.
[27] LU B, DONG X L, HUANG H, et al.Microwave absorption properties of the core/shell-type iron and nickel nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(6): 1106-1111.
[28] WALSER R M, WIN W, VALANJU P M.Shape-optimized ferromagnetic particles with maximum theoretical microwave susceptibility[J]. IEEE Transactions on Magnetics, 1998, 34(4): 1390-1392.
[29] 孙新. 羰基铁粉及其复合材料的电磁性能研究[D]. 南京: 南京航空航天大学, 2013.
SUN Xin.Electromagnetic properties of carbonyl iron powder and its composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
[30] DUAN Y P, WU G L, GU S C, et al.Study on microwave absorbing properties of carbonyl-iron composite coating based on PVC and Al sheet[J]. Applied Surface Science, 2012, 258(15): 5746-5752.
[31] ZHANG X F, LIU Y Y, QIN G W.Break snoek limit via superparamagnetic coupling in Fe3O4/silica multiple-core/shell nanoparticles[J]. Applied Physics Letters, 2015, 106(3): 033105.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn