首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
综合评述

一维碳化物纳米材料的制备与性能研究进展

  • 杜军 ,
  • 蔡明柱 ,
  • 严石静 ,
  • 孙庆承 ,
  • 尹彩流
展开
  • 广西民族大学 材料与环境学院,南宁 530006

收稿日期: 2022-01-02

  修回日期: 2022-04-02

  网络出版日期: 2022-04-11

基金资助

国家自然科学基金资助项目(51903061); 广西自然科学基金资助项目(2019GXNSFAA185052)

Research progress on preparation and characterization of one-dimensional carbides nanomaterials

  • DU Jun ,
  • CAI Mingzhu ,
  • YAN Shijing ,
  • SUN Qingcheng ,
  • YIN Cailiu
Expand
  • School of Materials and Environment, Guangxi Minzu University, Nanning 530006, China

Received date: 2022-01-02

  Revised date: 2022-04-02

  Online published: 2022-04-11

摘要

一维碳化物纳米材料具有高强度、高硬度、高化学稳定性、低电阻率及强抗氧化腐蚀性等优点,在超导材料、高温涂层材料、切割工具材料、超强增韧材料等领域得到广泛应用。根据现有一维碳化物纳米材料的研究进展,本文重点综述了该种材料的合成方法、生长机理、微观结构、性能特点等方面的研究进展,并对该领域的发展空间进行了展望,期望为一维碳化物纳米材料的研究、开发与应用提供参考。

本文引用格式

杜军 , 蔡明柱 , 严石静 , 孙庆承 , 尹彩流 . 一维碳化物纳米材料的制备与性能研究进展[J]. 粉末冶金材料科学与工程, 2022 , 27(3) : 237 -245 . DOI: 10.19976/j.cnki.43-1448/TF.2021112

Abstract

One-dimensional carbides nanomaterials are widely used as superconducting materials, high temperature coating materials, cutting tool materials, supertoughening materials due to their high strength, high hardness, high chemical stability, low electrical resistivity and high oxidation corrosion resistance. Combined with the existing research progress of one-dimensional carbide nanomaterials, this paper focused on the synthesis method, growth mechanism, microstructure, performance characteristics and other aspects of the materials, and prospected the development space of this field. It is expected to provide reference for the research, development and application of one-dimensional carbide nanomaterials.

参考文献

[1] SUN Y, CUI H, GONG L, et al.Carbon-in-Al4C3 nanowire superstructure for field emitters[J]. ACS Nano, 2011, 5(2): 932-941.
[2] TAO X Y, LI Y P, DU J, et al.A generic bamboo-based carbothermal method for preparing carbide (SiC, B4C, TiC, TaC, NbC, TixNb1-xC, and TaxNb1-xC) nanowires[J]. Journal of Materials Chemistry, 2011, 21(25): 9095-9102.
[3] QIU Z, HUANG H, DU J, et al.NbC nanowire-supported Pt nanoparticles as a high performan cecatalyst for methanol electrooxidation[J]. Journal of Physical Chemistry C, 2013, 117(27):13770-13775.
[4] QIU Z, HUNG H, DU J, et al.Biotemplated synthesis of bark- structured TiC nanowires as Pt catalyst supports with enhanced electrocatalytic activity and durability for methanol oxidation[J]. Journal of Materials Chemistry A, 2014, 2(21): 8003-8008.
[5] LI Y L, LUO W, ZENG Z, et al.Pressure-induced superconductivity in CaC2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(23): 9289-9294.
[6] TZENG C T, TSUEI K D, LOW S.Experimental electronic structure of Be2C[J]. Physical Review B, 1998, 58(11): 6837-6843.
[7] FAN Y, DENG C, GAO Y X, et al.Highly reversible lithium storage in Li2C2 nanosheets[J]. Carbon, 2021, 177: 357-365.
[8] 李勉, 李友兵, 罗侃, 等. 基于A位元素置换策略合成新型MAX相材料Ti3ZnC2[J]. 无机材料学报, 2019, 34(1): 60-64.
LI Mian, LI Youbing, LUO Kan, et al.Synthesis of novel max phase Ti3ZnC2 via a-site-element-substitution approach[J]. Journal of Inorganic Materials, 2019, 34(1): 60-64.
[9] STROBEL T A, KURAKEVYCH O O, KIM D Y, et al.Synthesis of β-Mg2C3: a monoclinic high-pressure polymorph of magnesium sesquicarbide[J]. Inorganic Chemistry, 2014, 53(13): 7020-7027.
[10] LIU Y H, LIU X H, BIAN X F.Grain refinement of Mg-Al alloys with Al4C3-SiC/Al master alloy[J]. Materials Letters, 2004, 58(7/8): 1282-1287.
[11] MA L, HAMIDINEJAD M, LIANGC Y, et al.Enhanced electromagnetic wave absorption performance of polymer/SiC- nanowire/MXene (Ti3C2Tx) composites[J]. Carbon, 2021, 179(6304): 408-416.
[12] ASTROVA E V, ULIN V P, PARFENEVA A V, et al.Interaction of fluorocarbon with silicon monoxide and processes of SiC nanowire formation[J]. Semiconductors, 2020, 54(8): 900-911.
[13] WU W W, LIU Y, ZHOU Q, et al.Microwave absorbing properties of FeB/B4C nanowire composite[J]. Ceramics International, 2020, 46(3): 4020-4023.
[14] DU J, YANG Y C, FAN Z, et al.Biotemplating fabrication, mechanical and electrical characterizations of NbC nanowire arrays from the bamboo substrate[J]. Journal of Alloys and Compounds, 2013, 560: 142-146.
[15] TAO X Y, DU J, LI Y P, et al.TaC nanowire/activated carbon microfiber hybrid structures from bamboo fibers[J]. Advanced Energy Materials, 2011, 1(4): 534-539.
[16] TAO X Y, DU J, YANG Y C, et al.TiC nanorods derived from cotton fibers: chloride-assisted VLS growth, structure, and mechanical properties[J]. Crystal Growth and Design, 2011, 11(10): 4422-4426.
[17] WANG S J, CHEN C H, CHANG S C, et al.Growth and characterization of tungsten carbide nanowires by thermal annealing of sputter-deposited WCx films[J]. Applied Physics Letters, 2004, 85(12): 2358-2360.
[18] CHEN Z Y, DENNIS Y S T, ZHANG L M, et al. Silver thiolate nano-sized molecular clusters and their supramolecular covalent frameworks: an approach toward pre-templated synthesis[J]. Chemistry, 2017, 12(20): 2763-2769.
[19] FU Y Q, ZHANG Y L, ZHANG J, et al.Mechanical properties and ablation resistance of HfC nanowire modified carbon/carbon composites[J]. Ceramics International, 2020, 46(10): 16142-16150.
[20] CHEN X Q, FU C L, FRANCHINI C.Polymeric forms of carbon in dense lithium carbide[J]. Journal of Physics Condensed Matter an Institute of Physics Journal, 2010, 22(29): 292201.
[21] NYLEN J, KONAR S, LAZOR P, et al.Structural behavior of the acetylide carbides Li2C2 and CaC2 at high pressure[J]. Journal of Chemical Physics, 2012, 137(22): 224507.
[22] SUN Y, Cui H, WANG C G.Step-edge induced ordered growth: targeting to assemble super long horizontal nanowire alignment in large-scale[J]. Physical Chemistry Chemical Physics, 2013, 15(28): 11808-11813.
[23] ZHANG M, LING H L, ZHANG W G, et al.Preparation, superior field emission properties and first principles calculation of electronic structure of SiC nanowire arrays on Si substrate[J]. Materials Characterization, 2021, 180: 111413.
[24] PANDA S K, SENGUPTA J, JACOB C.Synthesis of beta- SiC/SiO2 core-sheath nanowires by CVD technique using Ni as catalyst[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(5): 3046-3052.
[25] 张荣军, 杨延清, 沈文涛. 三级化学气相沉积法制备SiC纤维及拉伸性能测试[J]. 无机材料学报, 2010, 8(25): 840-844.
ZHANG Rongjun, YANG Yanqing, SHEN Wentao.Preparation and tensile test of SiC fiber fabricated by three-stage chemical vapor deposition[J]. Journal of Inorganic Materials, 2010, 8(25): 840-844.
[26] TAGUCHI T, YAMAMOTO S, OHBA H.Synthesis and formation mechanism of novel double-thick-walled silicon carbide nanotubes from multiwalled carbon nanotubes[J]. Applied Surface Science, 2021, 551: 149421.
[27] WEI J, LI X T, WANG Y, et al.Photoluminescence property of inexpensive flexible SiC nanowires membrane by electrospinning and carbothermal reduction[J]. Journal of the American Ceramic Society, 2020, 103(11): 6187-6197.
[28] GYC A, RYLA B, LYW B, et al.Effect of SiC nanowires on the mechanical properties and thermal conductivity of 3D-SiCf/SiC composites prepared via precursor infiltration pyrolysis[J]. Journal of the European Ceramic Society, 2021, 41(10): 5026-5035.
[29] 吴玲玲, 吴仁兵, 杨光义, 等. 硅热蒸发法制备SiC纳米线及其结构表征[J]. 浙江大学学报(工学版), 2008, 42(3): 485-488.
WU Lingling, WU Renbing, YANG Guangyi, et al.Synthesis and characterization of SiC nanowires using silicon evaporation[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(3): 485-488.
[30] 薛涛, 孟家光, 金志浩. 废弃棉短绒生物模板制备纳米SiC纤维的研究[J]. 材料导报, 2013, 27(12): 76-81.
XUE Tao, MENG Jiaguang, JIN Zhihao.Study on preparation of Nano-SiC fibers by template method based on waste cotton linter[J]. Materials Reports, 2013, 27(12): 76-81.
[31] WENG W, WANG S B, XIAO W, et al.Direct conversion of rice husks to nanostructured SiC/C for CO2 photoreduction[J]. Advanced Materials, 2020, 32(29): 2001560.
[32] KIRIHARA K, MUKAIDA M, SHIMIZU Y.Electrical transport and thermoelectric properties of boron carbide nanowires[J]. Nanotechnology, 2017, 28(14):145404.
[33] LUO L, CHUNG S H, ASL H Y, et al.Long-life lithium-sulfur batteries with a bifunctional cathode substrate configured with boron carbide nanowires[J]. Advanced Materials, 2018, 30(39): 1804149.
[34] YUAN X Y, CHENG L F, KONG L, et al.Preparation of titanium carbide nanowires for application in electromagnetic wave absorption[J]. Journal of Alloys and Compounds, 2014, 596: 132-139.
[35] YAN Y, ZHANG L, QI X Y, et al.Template-free pseudomorphic synthesis of tungsten carbide nanorods[J]. Small, 2012, 8(21): 3350-3356.
[36] LI Nan, YAN Y, XIA B Y, et al.Novel tungsten carbide nanorods: An intrinsic peroxidase mimetic with high activity and stability in aqueous and organic solvents[J]. Biosensors and Bioelectronics, 2014, 54: 521-527.
[37] SUN Y, CHEN Y M, CUI H, et al.Ultralargebending strain and fracture-resistance investigation of tungsten carbide nanowires[J]. Small, 2017, 13(29): 1700389.
[38] TIAN S, ZHANG Y L, REN J C, et al.High-aspect-ratio HfC nanobelts accompanied by HfC nanowires: synthesis, characterization and field emission properties[J]. Applied Surface Science, 2017, 402(30): 344-351.
[39] FU Y Q, ZHANG Y L, LI T, et al.Effect of HfC nanowires grown on carbon fibers on the microstructure and thermophysical properties of C/C composites[J]. Journal of the American Ceramic Society, 2020, 103(2): 1304-1311.
[40] YIN X M, LI H J, FU Y Q, et al.Hierarchical core-shell structure of NiCo2O4 nanosheets @HfC nanowires networks for high performance flexible solid-state hybrid super capacitor[J]. Chemical Engineering Journal, 2020, 392: 124820.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn