首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

短碳纤维增强铜复合材料的计算细观力学模型及力学性能

  • 何东浪 ,
  • 方华婵 ,
  • 李郁兴 ,
  • 李金伟
展开
  • 中南大学 粉末冶金国家重点实验室,长沙 410083

收稿日期: 2022-03-08

  修回日期: 2022-04-20

  网络出版日期: 2022-04-07

基金资助

国家自然科学基金资助项目(51501228); 中南大学大型仪器设备开放共享基金资助项目(CSUZC202109); 中南大学研究生自主探索创新项目(1053320192757)

Computational meso-mechanical model and mechanical property of short carbon fiber reinforced copper matrix composites

  • HE Donglang ,
  • FANG Huachan ,
  • LI Yuxing ,
  • LI Jinwei
Expand
  • State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Received date: 2022-03-08

  Revised date: 2022-04-20

  Online published: 2022-04-07

摘要

针对粉末冶金法制备的短碳纤维增强铜复合材料(CSf/Cu),采用有限元方法建立细观力学模型,研究材料的拉伸损伤演化和断裂力学行为,并分析弱界面对复合材料拉伸性能的影响。结果表明,CSf/Cu复合材料的拉伸过程可分为弹性阶段、塑性硬化阶段、起始损伤阶段和损伤演化阶段。纤维端部的应力集中造成端部界面脱黏、轴向界面的损伤演化以及纤维桥联,基体损伤及其伴随的界面损伤造成基体破坏是材料断裂的主要机制。碳纤维长度大于60 μm时,纤维的轴向应力分布呈现“w”形,纤维有较强的承载能力;纤维长度为20 μm时,纤维几乎没有承载能力。纤维承受载荷越高,越容易造成界面破坏,随纤维长度从20 μm增加到140 μm,Csf/Cu复合材料的抗拉强度从146 MPa下降到102 MPa。

本文引用格式

何东浪 , 方华婵 , 李郁兴 , 李金伟 . 短碳纤维增强铜复合材料的计算细观力学模型及力学性能[J]. 粉末冶金材料科学与工程, 2022 , 27(4) : 382 -388 . DOI: 10.19976/j.cnki.43-1448/TF.2022016

Abstract

For the short carbon fiber reinforced copper matrix composites (CSf/Cu) prepared by powder metallurgy, a model was established to analyze the tensile damage evolution, fracture mechanical behavior and the influence of weak interface on mechanical properties of composites. The results show that the composites can be divided into elastic stage, plastic hardening stage, damage initiation stage, and damage evolution stage. The stress concentration at the fiber end causes the debonding of the end interface, the damage evolution of the axial interface and the fiber bridging. The damage of the matrix and the accompanying interface are the main fracture mechanism of the material. When the fiber length is greater than 60 μm, the axial stress of the fiber presents a “w” shape, and the fiber has a strong bearing capacity. When the fiber length is 20 μm, the fiber has almost no bearing capacity. The higher the load on the fiber, the easier it is to cause interfacial damage. With increasing fiber length from 20 μm to 140 μm, the strength of the composite decreases from 146 MPa to 102 MPa.

参考文献

[1] ZC A, HCF A, JMZ A, et al.Effect of carbon type and morphology on the microstructure and properties of carbon/ copper composites[J]. Wear, 29(5): 460-461.
[2] LANCIONI G, ALESSI R.Modeling micro-cracking and failure in short fiber-reinforced composites[J]. Journal of the Mechanics and Physics of Solids, 2019, 137: 103854.
[3] PIKE M, HICKMAN M, OSKAY C.Interactions between multiple enrichments in extended finite element analysis of short fiber reinforced composites[J]. International Journal for Multiscale Computational Engineering, 2015, 13(6): 83-87.
[4] PIKE M G, OSKAY C.Modeling random short nanofiber-and microfiber-reinforced composites using the extended finite- element method[J]. Journal of Nanomechanics & Micromechanics, 2014, 5(1): 1-11.
[5] PIKE M G, OSKAY C.Three dimensional modeling of short fiber reinforced composites with the extended finite element method[J]. Journal of Engineering Mechanics, 2019, 142(11): 1-12.
[6] YAVAS D, ZHANG Z, LIU Q, et al.Interlaminar shear behavior of continuous and short carbon fiber reinforced polymer composites fabricated by additive manufacturing[J]. Composites Part B: Engineering, 2020, 204: 1-26.
[7] MONDALI M, ABEDIAN A.An analytical model for stress analysis of short fiber composites in power law creep matrix[J]. International Journal of Non-Linear Mechanics, 2013, 57: 39-49.
[8] GAO J, YANG X, HUANG L H.Numerical prediction of mechanical properties of rubber composites reinforced by aramid fiber under large deformation[J]. Composite Structures, 2018, 201: 29-37.
[9] TIAN J, ZHONG S Y, SHI Z Q.Finite element analysis of creep behavior of AZ91D magnesium matrix composites reinforced with aluminum silicate short fibers[J]. Advanced Materials Research, 2012, 568(11): 311-314.
[10] YANG Q S, QIN Q H.Fiber interactions and effective elasto- plastic properties of short-fiber composites[J]. Composite Structures, 2001, 54(4): 523-528.
[11] HARPER L T, QIAN C, TURNER T A, et al.Representative volume elements for discontinuous carbon fibre composites. Part 1: boundary conditions[J]. Composites Science and Technology, 2012, 72(2): 225-234.
[12] HARPER L T, QIAN C, TURNER T A, et al.Representative volume elements for discontinuous carbon fibre composites. Part 2: determining the critical size[J]. Composites Science and Technology, 2012, 72(2): 204-210.
[13] DEMIRAL M, TANABI H, SABUNCUOGLU B.Experimental and numerical investigation of transverse shear behavior of glass-fibre composites with embedded vascular channel[J]. Composite Structures, 2020, 252(2): 1-28.
[14] LECLERC W, KARAMLAN-SURVILLE P, VIVET A.Influence of morphological parameters of a 2D random short fibre composite on its effective elastic properties[J]. Mechanics & Industry, 2013, 14(5): 361-365.
[15] XIANG L, BAI Y, ALGARNI M, et al.Study on the strengthening mechanisms of Cu/CNT nano-composites[J]. Materials Science & Engineering A, 2015, 645: 347-356.
[16] REDDY B, NARAYANA K B.A comparative study of analytical and numerical evaluation of elastic properties of short fiber composites[J]. IOP Conference Series: Materials Science and Engineering, 2016, 149: 012089.
[17] LEI Y, YAN Y, LIU Y, et al.Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression[J]. Composites Science & Technology, 2012, 72(15): 1818-1825.
[18] YU T, TENG J G, WONG Y L, et al.Finite element modeling of confined concrete-I: Drucker-Prager type plasticity model[J]. Engineering Structures, 2010, 32(3): 665-679.
[19] COX H L.The elasticity and strength of paper and other fibrous materials[J]. British Journal of Applied Physics, 1951, 3(3): 72-73.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn