首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

石墨烯添加对SiCf/SiC复合材料性能的影响

  • 王徐辉 ,
  • 陈招科 ,
  • 李国旺 ,
  • 苏康 ,
  • 毛健 ,
  • 熊翔
展开
  • 中南大学 轻质高强结构材料重点实验室,长沙 410083

收稿日期: 2022-01-05

  修回日期: 2022-02-27

  网络出版日期: 2022-03-25

基金资助

国家自然科学基金资助项目(52072410)

Effect of graphene introduction on properties of SiCf/SiC composites

  • WANG Xuhui ,
  • CHEN Zhaoke ,
  • LI Guowang ,
  • SU Kang ,
  • MAO Jian ,
  • XIONG Xiang
Expand
  • Science and Technology on High Strength Structural Materials Laboratory, Central South University, Changsha 410083, China

Received date: 2022-01-05

  Revised date: 2022-02-27

  Online published: 2022-03-25

摘要

利用刷涂法将石墨烯/SiC浆料引入SiC纤维布层之间,经模具夹持再化学气相渗透SiC后,制备石墨烯改性SiCf/SiC复合材料。利用扫描电镜、三点弯曲测试以及激光热导仪等深入研究浆料中石墨烯的质量分数对SiCf/SiC复合材料微观结构、力学性能和导热性能的影响。结果表明,浆料中石墨烯质量分数为2%时,石墨烯分布最均匀,SiCf/SiC复合材料的热导率最高,为13.14 W/(m·K);随浆料中石墨烯质量分数增加,石墨烯开始团聚,材料致密度下降,热导率随之下降。当石墨烯质量分数为4%时,石墨烯虽出现一定程度团聚,但石墨烯团聚体仍与基体有良好的结合,复合材料具有最高抗弯强度,为328.12 MPa。

本文引用格式

王徐辉 , 陈招科 , 李国旺 , 苏康 , 毛健 , 熊翔 . 石墨烯添加对SiCf/SiC复合材料性能的影响[J]. 粉末冶金材料科学与工程, 2022 , 27(3) : 294 -301 . DOI: 10.19976/j.cnki.43-1448/TF.2022001

Abstract

In this paper, graphene contained SiCf/SiC composites were prepared by a two-step process, with graphene/SiC slurry introduced by slurry brushing first, then followed a chemical vapor infiltration of SiC matrix. The effects of graphene mass fraction in the slurry on the microstructure, mechanical properties and thermal conductivity of SiCf/SiC composites were studied by using scanning electron microscopy, three-point bending test and laser flash apparatus. The results show that, when the mass fraction of graphene is 2%, the distribution of graphene in the slurry layer is uniformly, resulting in the highest thermal conductivity of 13.14 W/(m·K) of the composites. With the increase of the mass fraction, the distribution of graphene in the slurry layer is deteriorated, which leads to a decrease of the density and thermal conductivity of SiCf/SiC composites. However, although graphene begins to agglomerate at a mass fraction of 4%, the composites possess the highest flexural strength of 328.12 MPa, due to the well bonding between graphene and the SiC matrix.

参考文献

[1] 陈明伟, 谢巍杰, 邱海鹏. 连续碳化硅纤维增强碳化硅陶瓷基复合材料研究进展[J]. 现代技术陶瓷, 2016, 37(6): 393-402.
CHEN Mingwei, XIE Weijie, QIU Haipeng.Recent progress in continuous SiC fiber reinforced SiC ceramic matrix composites[J]. Advanced Ceramics, 2016, 37(6): 393-402.
[2] WANG X L, GAO X D, ZHANG Z H, et al.Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: a focused review[J]. Journal of the European Ceramic Society, 2021, 41(9): 4671-4688.
[3] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2): 1-6.
ZHANG Litong, CHENG Laifei.Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 1-6.
[4] QIU B W, WANG J, DENG Y B, et al.A review on thermohydraulic and mechanical-physical properties of SiC, FeCrAl and Ti3SiC2 for ATF cladding[J]. Nuclear Engineering and Technology, 2020, 52(1): 1-13.
[5] KOYANAGI T, KATOH Y, NOZAWA T, et al.Recent progress in the development of SiC composites for nuclear fusion applications[J]. Journal of Nuclear Materials, 2018, 511: 544-555.
[6] DUAN Z G, YANG H L, SATOH Y, et al.Current status of materials development of nuclear fuel cladding tubes for light water reactors[J]. Nuclear Engineering and Design, 2017, 316: 131-150.
[7] KOYANAGI T, OZAWA K, HINOKI T, et al.Effects of neutron irradiation on mechanical properties of silicon carbide composites fabricated by nano-infiltration and transient eutectic- phase process[J]. Journal of Nuclear Materials, 2014, 448(1): 478-486.
[8] 程亮, 张鹏程. 典型事故容错轻水堆燃料包壳候选材料SiCf/SiC复合材料和Mo合金的研究进展[J]. 材料导报, 2018, 32(13): 2161-2166.
CHENG Liang, ZHANG Pengcheng.SiCf/SiC composites and molybdenum alloys: the promising candidate materials for typical accident tolerant fuel cladding of light water reactors[J]. Materials Reports, 2018, 32(13): 2161-2166.
[9] YU P P, LIN Z J, YU J.Mechanical, thermal, and dielectric properties of SiCf/SiC composites reinforced with electrospun SiC fibers by PIP[J]. Journal of the European Ceramic Society, 2021, 41(14): 6859-6868.
[10] LUO Z, ZHOU X G, YU J S, et al.Mechanical properties of SiC/SiC composites fabricated by PIP process with a new precursor polymer[J]. Ceramics International, 2014, 40(1, Part B): 1939-1944.
[11] KISHIMOTO H, PARK J S, NAKAZATO N, et al.Silicon dissolution and morphology modification of NITE SiC/SiC claddings in pressurized flowing water under neutron irradiation[J]. Journal of Nuclear Materials, 2021, 557: 153253.
[12] PARK J S, KIM J I, NAKAZATO N, et al.Oxidation resistance of NITE-SiC/SiC composites with/without CVD-SiC environmental barrier coating[J]. Ceramics International, 2018, 44(14): 17319-17325.
[13] 胡建宝, 杨金山, 张翔宇, 等. 高致密反应烧结SiCf/SiC复合材料的微观结构与性能[J]. 航空制造技术, 2018, 61(14): 16-21.
HU Jianbao, YANG Jinshan, ZHANG Xiangyu, et al.Microstructure and properties of melt-infiltrated SiCf/SiC ceramic matrix composite[J]. Aeronautical Manufacturing Technology, 2018, 61(14):16-21.
[14] TAO P F, WANG Y G.Improved thermal conductivity of silicon carbide fibers-reinforced silicon carbide matrix composites by chemical vapor infiltration method[J]. Ceramics International, 2019, 45(2, Part A): 2207-2212.
[15] LI Y, CHEN Z K, ZHANG R Q, et al.Ring compression properties of SiCf/SiC composites prepared by chemical vapor infiltration[J]. Ceramics International, 2018, 44(18): 22529-22537.
[16] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.
[17] 陈程, 云闯, 杨建, 等.石墨烯/陶瓷基复合材料研究进展[J]. 现代技术陶瓷, 2017, 38(3): 176-188.
CHEN Cheng, YUN Chuang, YANG Jian, et al.Research progress of graphene/ceramic matric composites[J]. Advanced Ceramics, 2017, 38(3): 176-188.
[18] 郭准, 于菲, 赵阳, 等. 原位聚合法制备石墨烯/聚酰亚胺复合材料及其性能[J]. 化工新型材料, 2019, 47(5): 73-76, 84.
GUO Zhun, YU Fei, ZHAO Yang, et al.Synthesis of GNS/PI composite by in-situ polymerization and its property[J]. New Chemical Materials, 2019, 47(5): 73-76, 84.
[19] 徐彬桓, 林文松, 傅肃嘉, 等. 石墨烯添加量对无压烧结石墨烯/碳化硅陶瓷复合材料性能的影响[J]. 机械工程材料, 2018, 42(8): 29-32.
XU Binhuan, LIN Wensong, FU Sujia, et al.Effect of graphene addition amount on properties of pressureless sintered graphene/silicon carbide ceramic composite[J]. Materials for Mechanical Engineering, 2018, 42(8): 29-32.
[20] LI Q S, ZHANG Y J, GONG H Y, et al.Effects of graphene on the thermal conductivity of pressureless-sintered SiC ceramics[J]. Ceramics International, 2015, 41(10, Part A): 13547-13552.
[21] CHEN Y H, CHEN Z K, ZHANG R Q, et al.Structural evolution and mechanical properties of Cansas-III SiC fibers after thermal treatment up to 1 700 ℃[J]. Journal of the European Ceramic Society, 2021, 41(10): 5036-5045.
[22] LIU J, YAN H X, REECE M J, et al.Toughening of zirconia/alumina composites by the addition of graphene platelets[J]. Journal of the European Ceramic Society, 2012, 32(16): 4185-4193.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn