首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

选区激光熔化增材制造高强度Al-Mg-Sc-Zr合金的微观组织与力学性能

  • 朱溪 ,
  • 袁铁锤 ,
  • 王敏卜 ,
  • 黄岚 ,
  • 李瑞迪 ,
  • 吕亮 ,
  • 易出山 ,
  • 罗强
展开
  • 1.中南大学 粉末冶金国家重点实验室,长沙 410083;
    2.中南大学 深圳研究院,深圳 518057;
    3.中国航发南方工业有限公司,株洲 410000

收稿日期: 2021-11-25

  修回日期: 2022-04-01

  网络出版日期: 2022-03-25

基金资助

国家自然科学基金资助项目(U21B2073); 湖南省重点研发计划资助项目(2020WK2027); 深圳市科技计划资助项目(JCYJ20180508151903646); 山东省自然科学基金资助项目(ZR2020ZD04)

Microstructure and mechanical properties of Al-Mg-Sc-Zr alloy prepared by selective laser melting

  • ZHU Xi ,
  • YUNA Tiechui ,
  • WANG Minbu ,
  • HUANG Lan ,
  • LI Ruidi ,
  • LÜ liang ,
  • YI Chushan ,
  • LUO Qiang
Expand
  • 1. State key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
    2. Shenzhen Research Institute, Central South University, Shenzhen 518057, China;
    3. AECC South Industry Company Limited, Zhuzhou 410000, China

Received date: 2021-11-25

  Revised date: 2022-04-01

  Online published: 2022-03-25

摘要

以气雾化预合金粉末为原材料,采用选区激光熔化(selective laser melting, SLM)成形制备Al-Mg-Sc-Zr合金。采用光学显微镜、扫描电子显微镜及室温拉伸实验等研究激光功率对合金缺陷、微观组织及力学性能的影响。结果表明,SLM成形Al-Mg-Sc-Zr合金具有细等轴晶和粗柱状晶交替出现的混晶组织,在细等轴晶区存在明显的元素偏析和部分Al3(Sc,Zr)析出粒子钉扎晶界。当激光功率由260 W增大到380 W时,试样的孔隙率呈现先减少后增加的趋势,力学性能的变化趋势相反。在最佳激光功率300 W下,试样相对密度达99.4%,仅存在少量因液态金属供应不足造成的小尺寸圆形孔隙;抗拉强度、屈服强度与断裂伸长率分别为429.7 MPa、363.5 MPa和17.7%。经325 ℃时效处理10 h后,合金的抗拉强度、屈服强度与断裂伸长率分别达到530.1 MPa、506.4 MPa和9.0%。

本文引用格式

朱溪 , 袁铁锤 , 王敏卜 , 黄岚 , 李瑞迪 , 吕亮 , 易出山 , 罗强 . 选区激光熔化增材制造高强度Al-Mg-Sc-Zr合金的微观组织与力学性能[J]. 粉末冶金材料科学与工程, 2022 , 27(2) : 205 -214 . DOI: 10.19976/j.cnki.43-1448/TF.2021103

Abstract

Al-Mg-Sc-Zr alloy were prepared by selective laser melting (SLM) technology with gas atomization powders as raw materials. The effects of processing parameters on metallurgical defects, microstructure, and tensile properties of SLM-fabricated samples were investigated through optical microscope analysis, scanning electron microscopy analysis, and unidirectional tensile test at room temperature, etc. The results show that SLM-fabricated Al-Mg-Sc-Zr alloy is characterized with mixed grains structure in which fine equiaxed grains and coarse columnar grains alternate. It can be obviously found that element segregation in fine equiaxed grain region and precipitated Al3(Sc,Zr) particles pin at the grain boundary. When the laser power increases from 260 W to 380 W, the porosity of the sample decreases first and then increases, while the changing trend of mechanical property is opposite. When the laser power is 300 W, the optimum parameter is obtained with the relative density reaching 99.4%. There are only a few small shrinkage pores in the sample due to the insufficient supply of liquid metal. The ultimate tensile strength, yield strength, and fracture elongation are 429.7 MPa, 363.5 MPa and 17.7%, respectively. After aging treatment at 325 ℃ for 10 h, the ultimate tensile strength, yield strength, and fracture elongation are 530.1 MPa, 506.4 MPa and 9.0%, respectively.

参考文献

[1] 张新明, 邓运来, 张勇. 高强铝合金的发展及其材料的制备加工技术[J]. 金属学报, 2015, 51(3): 257-271.
ZHNAG Xinming, DENG Yunlai, ZHANG Yong.Development of high strength alumimum alloys and processing techniques for the materials[J]. Acta Metallurgica Sinica, 2015, 51(3): 257-271.
[2] KUANG Q B, WANG R C, PENG C Q, et al.Comparison of microstructure and mechanical properties of Al-Mg-Li-Sc-Zr alloys processed by ingot metallurgy and rapid solidification[J]. Journal of Alloys and Compounds, 2021, 883: 160937.
[3] FANG H J, LIU H, YAN Y, et al.Evolution of texture, microstructure, tensile strength and corrosion properties of annealed Al-Mg-Sc-Zr alloys[J]. Materials Science and Engineering A, 2021, 804: 140682.
[4] SHIN S S, LEE J C, PARK I M.Squeeze-cast Al-xZn-3Cu alloys exhibiting high strength, ductility, and wear resistance[J]. Materials Science and Engineering A, 2017, 690: 177-184.
[5] ABOULKHAIR N T, SIMONELLI M, PARRY L, et al.3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578.
[6] ZHANG J L, SONG B, WEI Q S, et al.A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends[J]. Journal of Materials Science and Technology, 2019, 35(2): 270-284.
[7] OLAKANMI E O, COCHRANE R F, DALGARNO K W.A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401-477.
[8] KUSOGLU I M, GÖKCE B, BARCIKOWSKI S. Research trends in laser powder bed fusion of Al alloys within the last decade[J]. Additive Manufacturing, 2020, 36: 101489.
[9] SPIERINGS A B, DAWSON K, DUMITRASCHKEWITZ P, et al.Microstructure characterization of SLM-processed Al- Mg-Sc-Zr alloy in the heat treated and HIPed condition[J]. Additive Manufacturing, 2018, 20: 173-181.
[10] LI R D, CHEN H, ZHU H B, et al.Effect of aging treatment on the microstructure and mechanical properties of Al-3.02Mg- 0.2Sc-0.1Zr alloy printed by selective laser melting[J]. Materials and Design, 2019, 168: 107668.
[11] CROTEAU J R, GRIFFITHS S, ROSSELL M D, et al.Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Materialia, 2018, 153: 35-44.
[12] SOW M C, DE TERRIS T, CASTELNAU O, et al.Influence of beam diameter on laser powder bed fusion (L-PBF) process[J]. Additive Manufacturing, 2020, 36: 101532.
[13] BIFFI C A, FIOCCHI J, BASSANI P, et al.Continuous wave vs pulsed wave laser emission in selective laser melting of AlSi10Mg parts with industrial optimized process parameters: Microstructure and mechanical behaviour[J]. Additive Manufacturing, 2018, 24: 639-646.
[14] XIAO R S, ZHANG X Y.Problems and issues in laser beam welding of aluminum-lithium alloys[J]. Journal of Manufacturing Processes, 2014, 16(2) :166-175.
[15] FISCHER P, LOCHER M, ROMANO V, et al.Temperature measurements during selective laser sintering of titanium powder[J]. International Journal of Machine Tools and Manufacture, 2004, 44(12/13): 1293-1296.
[16] WEINGARTEN C, BUCHBINDER D, PIRCH N, et al.Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg[J]. Journal of Materials Processing Technology, 2015, 221: 112-120.
[17] BAYOUMY D, SCHLIEPHAKE D, DIETRICH S, et al.Intensive processing optimization for achieving strong and ductile Al-Mn-Mg-Sc-Zr alloy produced by selective laser melting[J]. Materials and Design, 2021, 198: 109317.
[18] DAI D, GU D.Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres[J]. Applied Surface Science, 2015, 355: 310-319.
[19] MA R, PENG C, CAI Z, et al.Effect of bimodal microstructure on the tensile properties of selective laser melt Al-Mg-Sc-Zr alloy[J]. Journal of Alloys and Compounds, 2020, 815: 152422.
[20] SPIERINGS A B, DAWSON K, DUMITRASCHKEWITZ P, et al.Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc- and Zr-modified Al-Mg alloys[J]. Materials and Design, 2018, 140: 134-143.
[21] YAMAGATA H, KASPRZAK W, ANIOLEK M, et al.The effect of average cooling rates on the microstructure of the Al-20% Si high pressure die casting alloy used for monolithic cylinder blocks[J]. Journal of Materials Processing Technology, 2008, 203(1/3): 333-341.
[22] LIU S W, ZHU H H, PENG G Y, et al.Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials and Design, 2018, 142: 319-328.
[23] DUAN Y X, CHEN H, CHEN Z, et al.The influence of nanosized precipitates on Portevin-Le Chatelier bands and surface roughness in AlMgScZr alloy[J]. Journal of Materials Science and Technology, 2021, 87: 74-82.
[24] NIE X, ZHANG H, ZHU H, et al.On the role of Zr content into Portevin-Le Chatelier (PLC) effect of selective laser melted high strength Al-Cu-Mg-Mn alloy[J]. Materials Letters, 2019, 248: 5-7.
[25] MOGUCHEVA A, YUZBEKOVA D, KAIBYSHEV R, et al.Effect of grain refinement on Jerky flow in an Al-Mg-Sc alloy[J]. Metallurgical and Materials Transactions A, 2016, 47A(5): 2093-2106.
[26] RAEISINIA B, SINCLAIR C W, POOLE W J, et al.On the impact of grain size distribution on the plastic behaviour polycrystalline metals[J]. Modelling and Simulation in Materials Science and Engineering, 2008, 16(2): 025001.
[27] HE J H, JIN L, WANG F H, et al.Mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with bimodal grain size distributions[J]. Journal of Magnesium and Alloys, 2017, 5(4): 423-429.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn