首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

铝空气电池用Ag@Cu2+1O/MWNTs氧还原催化剂的制备和电催化性能

  • 尹连琨 ,
  • 张岩松 ,
  • 于佳鑫 ,
  • 罗志虹
展开
  • 桂林理工大学 材料科学与工程学院 广西光电材料与器件重点实验室,桂林 541004

收稿日期: 2021-11-19

  修回日期: 2021-12-15

  网络出版日期: 2022-03-25

基金资助

国家自然科学基金资助项目(51874051); 广西自然科学基金资助项目(2018GXNSFAA281184,2019GXNSFAA245046); 广西光电材料与器件重点实验室开放基金资助项目(20KF-4,20AA-18)

Preparation and electrocatalytic performance of Ag@Cu2+1O/MWNTs catalysts towards oxygen reoxygen reduction catalyst for aluminum-air battery

  • YIN Liankun ,
  • ZHANG Yansong ,
  • YU Jiaxin ,
  • LUO Zhihong
Expand
  • Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China

Received date: 2021-11-19

  Revised date: 2021-12-15

  Online published: 2022-03-25

摘要

以四羟甲基氯化磷(THPC)为还原剂,多壁碳纳米管(multi-walled carbon nanotubes, MWNTs)为载体,采用一步法制备Ag@Cu2+1O/MWNTs催化剂,用X射线衍射仪、透射电镜、X射线光电子能谱仪等对催化剂结构、形貌及组成进行表征,并进行负载量测试及循环伏安法(cyclic voltammetry, CV)、线性伏安法(linear sweep voltammetry, LSV)等氧还原反应(oxidation-reduction reaction, ORR)测试。结果表明,Ag@Cu2+1O/MWNTs催化剂的Ag和Cu2+1O负载量(质量分数,%)分别为9.32%和5.90%,Ag@Cu2+1O的平均粒径约为7 nm。Ag@Cu2+1O/ MWNTs在碱性介质中催化直接四电子氧还原过程,LSV半波电位为0.75 V,1 600 r/min下的极限扩散电流密度接近5.5 mA/cm2,Tafel斜率为92 mV/dec,与20%Pt/C相当,优于Ag负载量为17.5%的Ag/MWNTs催化剂。Ag@Cu2+1O/MWNTs具有与20%Pt/C相当的稳定性和更强的耐甲醇毒化能力。作为铝空气电池阴极催化剂时,表现出与20%Pt/C相当的功率密度(148.7 mW/cm2)、容量(1 260 mAh/g)和稳定性。

本文引用格式

尹连琨 , 张岩松 , 于佳鑫 , 罗志虹 . 铝空气电池用Ag@Cu2+1O/MWNTs氧还原催化剂的制备和电催化性能[J]. 粉末冶金材料科学与工程, 2022 , 27(3) : 284 -293 . DOI: 10.19976/j.cnki.43-1448/TF.2021098

Abstract

Ag@Cu2+1O/MWNTs catalysts were prepared by one-step method with THPC as reducing agent and MWNTs as support. The structure, morphology, and composition of the catalyst were characterized by X-ray diffractometry, transmission electron microscopy, and X-ray photoelectron spectroscopy. In addition, the catalyst load and ORR performance were tested. It can be seen that the Ag and Cu2+1O loading (mass fraction, %) of Ag@Cu2+1O/MWNTs catalyst are 9.32% and 5.90%, respectively, and the average particle size of Ag@Cu2+1O catalyst is about 7 nm. Ag@Cu2+1O/MWNTs catalyzes direct four-electron oxygen reduction in alkaline medium, the half-wave potential of Ag@Cu2+1O/MWNTs is 0.75 V, the limit diffusion current density is close to 5.5 mA/cm2 at 1 600 r/min and the slope of Tafel is 92 mV/dec, which is equivalent to the performance of 20%Pt/C and is more outstanding than Ag/MWNTs catalyst with 17.5%Ag loading capacity. Meanwhile, Ag@Cu2+1O/MWNTs has the same stability as 20%Pt/C and better resistance to methanol poisoning. When used as cathode catalyst for aluminum-air battery, Ag@Cu2+1O/MWNTs exhibits power density (148.7 mW/cm2), capacity (1 260 mAh/g) and stability which is comparable to that of 20%Pt/C.

参考文献

[1] WU S, HU S, ZHANG Q, et al.Hybrid high-concentration electrolyte significantly strengthens the practicability of alkaline aluminum-air battery[J]. Energy Storage Materials, 2020, 31(6): 310-317.
[2] WU S, ZHANG Q, MA J, et al.Interfacial design of Al electrode for efficient aluminum-air batteries: issues and advances[J]. Materials Today Energy, 2020, 18(10):100499.
[3] LIU D, TIAN J, TANG Y, et al.High-power double-face flow Al-air battery enabled by CeO2 decorated MnOOH nanorods catalyst[J]. Chemical Engineering Journal, 2021, 406(15): 126772.
[4] WANG Y, HAO J, YU J, et al.Hierarchically porous N-doped carbon derived from biomass as oxygen reduction electrocatalyst for high-performance Al-air battery[J]. Journal of Energy Chemistry, 2020, 45(6): 119-125.
[5] LIU Y S, SUN Q, LI W Z, et al.A comprehensive review on recent progress in aluminum-air batteries[J]. Green Energy and Environment, 2017, 2(3): 246-277.
[6] CHENG F Y, CHEN J.Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 6(41): 2172-2192.
[7] SUN J, GUO N K, SHAO X Y, et al.A facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquiddopant[J]. Advanced Energy Materials, 2018, 8(27): 100980.
[8] LIU D P, TIAN J, TANG Y G, et al.High-power double-face flow Al-air battery enabled by CeO2 decorated MnOOH nanorods catalyst[J]. Chemical Engineering Journal, 2021, 406(15):126772.
[9] XIN L, ZHANG Z, WANG Z, et al.Carbon supported Ag nanoparticles as high-performance cathode catalyst for H2/O2 anion exchange membrane fuel cell[J]. Frontiers in Chemistry, 2013, 1(7): 16-20.
[10] NOORI M T, JAIN S C, GHANGREKAR M M, et al.Biofouling inhibition and enhancing performance of microbial fuel cell using silver nano-particles as fungicide and cathode catalyst[J]. Bioresource Technology, 2016, 220(11): 183-189.
[11] CHENG Y, LI W, FAN X.Modified multi-walled carbon nanotube/Ag nanoparticle compositecatalyst for the oxygen reduction reaction in alkaline solution[J]. Electrochimica Acta, 2013, 111(6): 635-641.
[12] MAHESWARI S, SRIDHAR P, PITCHUMANI S.Carbon- supported silver as cathode electrocatalyst for alkaline polymer electrolyte membrane fuel cells[J]. Electrocatalysis, 2012, 3(1): 13-21.
[13] TANG Q, JIANG L, QI J, et al.One step synthesis of carbon- supported Ag/MnyOx composites for oxygen reduction reaction in alkaline media[J]. Applied Catalysis B: Environmental, 2011, 103(3): 337-345.
[14] WALANDA D K, LAWRANCE G A, DONNE S W.Hydrothermal MnO2: synthesis, structure, morphology and discharge performance[J]. Journal of Power Sources, 2014, 139(1): 325-341.
[15] GOH F W T, LIU Z, GE X, et al. Ag-nanoparticles-modified MnO2 nanorods catalysts for use as an air electrode in zinc-air battery[J]. Electrochimica Acta, 2013, 114(30): 598-604.
[16] NORSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al.Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. Journal of Physical Chenistry B, 2004, 108(46): 17886-17892.
[17] STAMENKOVIC V, MUN B S, MAYRHOFER K J J, et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angewandte Chemie- International Edition, 2006, 45(18): 2897-2901.
[18] TRIPKOVIC V, SKULASON E, SIAHROSTAMI S, et al.The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations[J]. Electrochim Acta, 2010, 55(27): 7975-7981.
[19] 李长玉, 刘守新, 马跃. 可见光响应Cu-Cu2+1O复合材料的水热法一步合成[J]. 物理化学学报, 2009, 25(8):1555-1560.
LI Changyu, LIU Shouxin, MA Yue.Preparation of visible-light response Cu-Cu2+1O composites by aone-step hydrothermal method[J]. Acta Physicao-Chimica Sinica, 2009, 25(8): 1555-1560.
[20] XIANG L, LUO Z, HU C, et al.Gold nanoparticle/multi-walled carbon nanotube hybrid as a stable catalyst for the oxygen reduction reaction[J]. ChemElectroChem, 2018, 5(7): 1073-1079.
[21] GUO L, XIANG L, Li F, et al.Silver nanoparticle/multiwalled carbon nanotube hybrid as an efficient electrocatalyst for the oxygen reduction reaction in alkaline medium[J]. ChemElectroChem, 2019, 6(9): 2489-2496.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn