采用溶剂热法在碳纸(carbon paper, CP)表面分别原位负载2种金属有机框架(metal organic frame, MOFs)前驱体(记为Zn-MOF-74和ZIF-8),经900 ℃高温热处理后前驱体衍生为氮掺杂多孔碳,得到氮掺杂多孔碳@CP电催化剂材料,分别记为CP-Zn-MOF-74-900-N2和CP-ZIF-8-900-N2。研究CP的组成、孔结构以及外磁场强度对电催化剂OER(oxygen evolution reaction,析氧反应)性能的影响。结果表明,原位负载的ZIF-8在CP的纤维表面形成致密的棱形十二面体颗粒层,热处理后在纤维表面形成均匀的纳米级氮掺杂碳材料。ZIF-8-900-N2的比表面积为1 559 m2/g,孔径为0.57 nm,孔容为1.59 cm3/g,具有最佳的磁性能和磁致发热性能。碳纸和氮掺杂多孔碳@CP材料中,CP-ZIF-8-900-N2具有最小的OER过电势和Tafel斜率,分别为334 mV(电流密度为10 mA/cm2,经过iR矫正)和187 mV/dec (decade,十进)。当存在外磁场时,随磁场强度增大,催化剂的OER过电势先降低然后稳定不变,当外磁场强度为5.54×10-3 T时,CP-ZIF-8-900-N2的过电势达到最小值,为316 mV(没有经过iR矫正),比未引入磁场时下降约20.4%,这主要归因于磁流体动力学效应导致气泡尺寸减小、气泡聚结增强,使得气泡从电极表面的解吸得到改善。
[1] FENG Y Y, SI S, DENG G, et al.Copper-doped ruthenium oxide as highly efficient electrocatalysts for the evolution of oxygen in acidic media[J]. Journal of Alloys and Compounds, 2022, 892(5): 162113.
[2] LI Y B, TAN X, TAN H, et al.Phosphine vapor-assisted construction of heterostructured Ni2P/NiTe2 catalysts for efficient hydrogen evolution[J]. Energy and Environmental Science, 2020, 13(6): 1799-1807.
[3] DIONIGI F, ZENG ZH, SINEV I, et al.In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution[J]. Nature Communications, 2020, 11(1): 2522.
[4] DINH K N, SUN Y X, PEI Z X, et al.Electronic modulation of nickel disulfide toward efficient water electrolysis[J], Small, 2020, 16(17): 1905885.
[5] SONG W J, TENG X, NIU Y L, et al.Self-templating construction of hollow Fe-CoxP nanospheres for oxygen evolution reaction[J]. Chemical Engineering, 2021, 409(12): 128227.
[6] ZHENG F Q, ZHANG Z W, ZHANG C M, et al.Advanced electrocatalysts based on metal-organic frameworks[J]. ACS Omega, 2020, 5(6): 2495-2502.
[7] DU J, LI F, SUN L.Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction[J]. Chemical Society Reviews, 2021, 50(4): 2663-2695.
[8] ZOU L L, KITTA M, HONG J H, et al.Fabrication of a spherical superstructure of carbon nanorods[J]. Advanced Materials, 2019, 31(24): 1900440.
[9] REN J C, HUANG Y L, ZHU H, et al.Recent progress on MOF-derived carbon materials for energy storage[J]. Carbon Energy, 2020, 2(2): 176-202.
[10] KOZA J A, UHLEMANN M, GEBERT A, et al.Desorption of hydrogen from the electrode surface under influence of an external magnetic field[J]. Electrochemistry Communications, 2008, 10(9): 1330-1333.
[11] REN X, WU T Z, SUN Y M, et al.Spin-polarized oxygen evolution reaction under magnetic field[J]. Nature Communications, 2021, 12: 2608.
[12] NIETHER C, FAURE S, BORDET A, et al.Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles[J]. Nature Energy, 2018, 3(6): 476-483.
[13] WEI Z Y, Zhu W X, LI Y G, et al.Conductive leaflike cobalt metal-organic framework nanoarray on carbon cloth as a flexible and versatile anode toward both electrocatalytic glucose and water oxidation[J]. Inorganic Chemistry. 2018, 57(14): 8422-8428.
[14] ZHENG H B, Wang Y L, ZHANG P, et al.Multiple effects driven by AC magnetic field for enhanced electrocatalytic oxygen evolution in alkaline electrolyte[J]. Chemical Engineering Journal, 2021, 426(1): 130785.
[15] ZHENG H B, WU D, WANG Y L, et al.One-step synthesis of ZIF-8/ZnO composites based on coordination defect strategy and its derivatives for photocatalysis[J]. Journal of Alloys and Compounds., 2020, 838(15): 155219.
[16] SON S, LIM D, NAM D, et al.N, S-doped nanocarbon derived from ZIF-8 as a highly efficient and durable electro-catalyst for oxygen reduction reaction[J]. Journal of Solid State Chemistry, 2019, 274: 237-242.
[17] WANG X L, XIAO H, LI A, et al.Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions[J]. Journal of the American Chemical Society, 2018, 140(45): 15336-15341.
[18] LIU S W, ZHANG H M, ZHAO Q, et al.Metal-organic framework derived nitrogen-doped porous carbon @graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. Carbon, 2016, 106: 74-83.
[19] 印钰. 氮表面改性钙钛矿氧化物氧电催化剂的制备与性能研究[D]. 深圳: 深圳大学, 2020.
YIN Yu.Preparation and properties of perovskite oxide oxygen electrocatalyst modified by nitrogen surface[D]. Shenzhen: Shenzhen University, 2020.
[20] SATHISKUMAR C, RAMAKRISHNAN S, VINOTHKANNAN M, et al.Nitrogen-doped porous carbon derived from biomass used as trifunctional electrocatalyst toward oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Nanomaterials, 2020, 10(1): 76-91.
[21] JING Y Q, LEI Q, HU G, et al.PVP/ZIF-8-derived Zn, Ni Co-loaded N-doped porous carbon as a catalyst for an efficient hydrogen evolution reaction[J]. Frontiers in Chemistry, 2020, 8: 723-728.
[22] LIDA H, ELAHEH D, MUHAMMAD I, et al.Spherical nitrogen-doped hollow mesoporous carbon as an efficient bifunctional electrocatalyst for Zn-air batteries[J]. Nanoscale, 2015, 7(48): 20547-20556.
[23] CHEN Z D, DENG W, LI D, et al.Construction of CoNiSSe-g-C3N4 nanosheets with high exposed conductive interface for boosting oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2021, 887: 161346.
[24] HAN J, ZHANG J, WANG T, et al.Zn Doped FeCo LDH nanoneedle arrays with partial amorphous phase for efficient oxygen evolution reaction[J]. ACS Sustainable Chemistry and Engineering, 2019,7(15): 13105-13114.
[25] ZHENG H B, CHEN H H, WANG Y L, et al.Fabrication of magnetic superstructure NiFe2O4@MOF-74 and its derivative for electrocatalytic hydrogen evolution with AC magnetic field[J]. ACS Applied Materials and Interfaces, 2020, 12(41): 45987-45996.
[26] ZHAO S L, YIN H J, DU L, et al.Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction[J]. ACS Nano, 2014, 8(12): 12660-12668.
[27] WANG Y, DAI H X, DENG J G, et al.Three-dimensionally ordered macroporous InVO4: fabrication and excellent visible- light-driven photocatalytic performance for methylene blue degradation[J]. Chemical Engineering Journal, 2013, 226(15): 87-94.
[28] SINGH S K, TAKEYASU K, NAKAMURA J J, et al.Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials[J]. Advanced Materials, 2019, 31(13): 1804297.
[29] TAHERINIA D, MORAVVEJ S H, MOAZZENIA M, et al.Metal-organic framework derived NiSe2/CeO2 nanocomposite as a high-performance electrocatalyst for oxygen evolution reaction (OER)[J]. Sustainable Energy & Fuels, 2021, 5: 2994-3000.
[30] 严密, 彭晓领. 磁学基础及磁性材料[M]. 杭州: 浙江大学出版社, 2006: 28-31.
YAN Mi, PENG Xiaoling.Magnetic Fundamentals and Magnetic Materials[M]. Hangzhou: Zhejiang University Press, 2006: 28-31.
[31] YAN B, GAO P Z, LU Z L, et al.Effect of Pr3+ substitution on the microstructure, specific surface area, magnetic properties and specific heating rate of Ni0.5Zn0.5PrxFe2-xO4 nanoparticles synthesized via sol-gel method[J]. Journal of Alloys and Compounds, 2015, 639(5): 626-634.
[32] WANG J J, ZENG H C.Hybrid OER electrocatalyst combining mesoporous hollow spheres of N, P-doped carbon with ultrafine Co2NiOx[J]. ACS Applied Materials and Interfaces, 2020, 12(45): 50324-50332.
[33] WANG J Y, LIU W T, LI X P, et al.Strong hydrophilicity NiS2/Fe7S8 heterojunctions encapsulated in N-doped carbon nanotubes for enhanced oxygen evolution reaction[J]. Chemical Communication, 2020, 56(10): 1489-1492.
[34] SRINIVAS K, CHEN Y F, WANG B, et al.Metal-organic framework-derived NiS/Fe3O4 heterostructure-decorated carbon nanotubes as highly efficient and durable electrocatalysts for oxygen evolution reaction[J]. ACS Applied Materials and Interfaces, 2020, 12(28): 31552-31563.
[35] PINEDA F, BLASCO M, CASTRO D N, et al.Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media[J]. Nature Energy, 2019, 4(6): 519-525.