首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
综合评述

3D打印铜及铜合金的研究进展

  • 吴谊友 ,
  • 丁柔 ,
  • 陈超 ,
  • 李瑞迪 ,
  • 周科朝
展开
  • 1.中南大学 粉末冶金国家重点实验室,长沙 410083;
    2.中南大学 深圳研究院,深圳 518057

收稿日期: 2021-09-18

  修回日期: 2022-01-27

  网络出版日期: 2022-03-01

基金资助

国家重点研发计划资助项目(2018YFB0704100); 广东省重点研发计划资助项目(2019B010943001)

Research progress on 3D printing of pure copper and copper alloys

  • WU Yiyou ,
  • DING Rou ,
  • CHEN Chao ,
  • LI Ruidi ,
  • ZHOU Kechao
Expand
  • 1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
    2. Shenzhen Research Institute, Central South University, Shenzhen 518057, China

Received date: 2021-09-18

  Revised date: 2022-01-27

  Online published: 2022-03-01

摘要

铜及铜合金的延展性好,并具有优异的导电导热性能和耐腐蚀性能,受到业界的广泛关注。本文重点综述了近年来3D打印成形铜及铜合金的工艺、微观组织和性能等方面的研究进展。降低铜对激光的反射率是选区激光熔化成形和激光金属熔化成形铜及铜合金的难点,也是调控组织及提高成形件性能的基础;选区电子束熔化和黏结剂喷射技术可解决铜对激光高反射率问题,成功实现铜及铜合金的3D打印成形,但仍然存在致密度低和收缩率大等问题,相关工艺有待进一步完善。同时还介绍3D打印铜与铜合金的应用前景,并对3D打印铜及铜合金的研究进展进行总结与展望。

本文引用格式

吴谊友 , 丁柔 , 陈超 , 李瑞迪 , 周科朝 . 3D打印铜及铜合金的研究进展[J]. 粉末冶金材料科学与工程, 2022 , 27(2) : 121 -128 . DOI: 10.19976/j.cnki.43-1448/TF.2021084

Abstract

Pure copper and copper alloys attract more and more attention due to their outstanding properties such as excellent electrical and thermal conductivities, ductility and high corrosion resistance. In this work, the research progress on the process characteristics, mircostructure evolution and mechanical properties of 3D printing pure copper and copper alloys in recent years were mainly summarized. The results show that the major challenge of pure copper and copper alloys fabricated by laser selective melting and laser melting deposition is to reduce the high reflectivity to the laser which can improve the density of the parts, manupulate the microstructure and obtain excellent mechanical properties. Process parameter optimization of selective electron beam melting and binder jetting need to be addressed due to the lower density and greater shrinkage of parts respectively, although it can overcome the problems caused by higher laser reflectivity of pure copper and copper alloys. Besides, this work introduced the application prospects about 3D printing of pure copper and copper alloys. Finaly, the progress on 3D printing of pure copper and copper alloys were also summarized and prospected.

参考文献

[1] GUO N, LEU M C.Additive manufacturing: technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8(3): 215-243.
[2] CHEN L, HE Y, YANG Y X, et al.The research status and development trend of additive manufacturing technology[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/12): 3651-3660.
[3] LI W Y, YANG K, YIN S, et al.Solid-state additive manufacturing and repairing by cold spraying: a review[J]. Journal of Materials Science & Technology, 2018, 34(3): 440-457.
[4] YAN X, CHEN C Y, CHANG C, et al.Study of the microstructure and mechanical performance of C-X stainless steel processed by selective laser melting (SLM)[J]. Materials Science and Engineering A, 2020, 781: 139227.
[5] 王晓燕. 铜金属3D打印白皮书[M]. 2版. 上海: 3D科学谷, 2021: 6-7.
WANG Xiaoyan.Whitepaper of Copper 3D Printing[M]. 2nd ed. Shanghai: 3D Science valley, 2021: 6-7.
[6] HUANG J, YAN X C, CHANG C, et al.Pure copper components fabricated by cold spray (CS) and selective laser melting (SLM) technology[J]. Surface & Coatings Technology, 2020, 395: 125936.
[7] 顾冬冬, 沈以赴, 杨家林, 等. 多组分铜基金属粉末选区激光烧结试验研究[J]. 航空学报, 2005, 26(4): 510-514.
GU Dongdong, SHEN Yifu, YANG Jialin, et al.Experimental research on selective of multi-component copper-based metal powder[J]. Acta Aeronautica and Astronautica Sinica, 2005, 26(4): 510-514.
[8] RAHMAN M S, SCHILLING P J, HERRIINGTON P D, et al.Thermal behavior and melt-pool dynamics of Cu-Cr-Zr alloy in powder bed selective laser melting process[J]. International Mechanical Engineering Congress and Exposition, 2019, 11: 11087.
[9] ZHANG G M, CHEN C, WANG X J, et al.Additive manufacturing of fine-structured copper alloy by selective laser melting of pre-alloyed Cu-15Ni-8Sn powder[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9): 4223-4230.
[10] GUSTMANN T, DOSSANTOS J M, GARGARELLA P, et al.Properties of Cu-based shape-memory alloys prepared by selective laser melting[J]. Shape Memory and Superelasticity, 2017, 3(1): 24-36.
[11] ZHUO L R, SONG B, LI R D, et al.Effect of element evaporation on the microstructure and properties of CuZnAl shape memory alloys prepared by selective laser melting[J]. Optics and Laser Technology, 2020, 127: 106164.
[12] MA Z B, ZHANG K F, REN Z H, et al.Selective laser melting of Cu-Cr-Zr copper alloy: parameter optimization, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2020, 828: 154350.
[13] 赵凡, 刘祖铭, 吕学谦, 等. 粉末冶金Cu-Cr-Zr合金的形变热处理组织及性能[J]. 粉末冶金材料科学与工程, 2019, 24(4): 385-390.
ZHAO Fan, LIU Zuming, LÜ Xueqian, et al.Microstructure and properties of thermomechanical heat treatment of powder metallurgy Cu-Cr-Zr alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4): 385-390.
[14] KARTHIK G M, PRAVEEN S, ALIREZA Z, et al.Novel precipitation and enhanced tensile properties in selective laser melted Cu-Sn alloy[J]. Materialia, 2020, 13: 100861.
[15] WANG J B, ZHOU X L, LI J H, et al.Microstructures and properties of SLM-manufactured Cu-15Ni-8Sn alloy[J]. Additive Manufacturing, 2020, 31: 100921.
[16] 田健, 魏青松, 朱文志, 等. Cu-Al-Ni-Ti合金激光选区成形工艺及其力学性能[J]. 中国激光, 2019, 46(3): 25-36.
TIAN Jian, WEI Qingsong, ZHU Wenzhi, et al.Selective laser melting process and mechanical properties of Cu-Al-Ni-Ti alloy[J]. Chinese Journal of Lasers, 2019, 46(3): 25-36.
[17] ZHANG S S, ZHU H H, ZHANG L, et al.Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting[J]. Materials Letters, 2019, 237: 306-309.
[18] UCHIDA S, KIMURA T, NAKAMOTO T, et al.Microstructures and electrical and mechanical properties of Cu-Cr alloys fabricated by selective laser melting[J]. Materials & Design, 2019, 175: 107815.
[19] CHEN Y H, REN S B, ZHAO Y, et al.Microstructure and properties of Cu-Cr alloy manufactured by selective laser melting[J]. Journal of Alloys and Compounds, 2019, 786: 189-197.
[20] ZHOU Y, ZENG X, WU H B, et al.Effect of crystallographic textures on thermal anisotropy of selective laser melted Cu-2.4Ni-0.7Si alloy[J]. Journal of Alloys and Compounds, 2018, 743: 258-261.
[21] 贺定勇, 李现兵, 张朋, 等. 一种利用3D打印制备高比强度、高弹性变形点阵结构铜合金的方法: 108372302A[P], 2018-08-07.
HE Dingyong, LI Xianbing, ZHANG Peng, et al. Method for preparing copper alloy with high specific strength and high elastic deformation lattice structure by using 3D printing: 108372302A[P].2018-08-07.
[22] GAN J, GAO H, WEN S F, et al.Simulation, forming process and mechanical property of Cu-Sn-Ti/diamond composites fabricated by selective laser melting[J]. International Journal of Refractory Metals & Hard Materials, 2020, 87: 105144.
[23] ZHONG H Z, LI C G, ZHANG X Y, et al.The graded microstructures evolving with thermal cycles in pure copper processed by laser metal deposition[J]. Materials Letters, 2018, 230: 215-218.
[24] ZHANG Y Z, TU Y, XI M Z, et al.Characterizat ion on laser clad nickel based alloy coating on pure copper[J]. Surface & Coatings Technology, 2008, 202(24): 5924-5928.
[25] BYSAKH S, CHATTOPADHYAY K, MAIWALD T, et al. Microstructure evolution in laser alloyed layer of Cu-Fe-Al-Si on Cu substrate[J]. Materials Science and Engineering A, 2004, 375/377: 661-665.
[26] 顾梦豪. 激光熔覆球磨Cu-Fe涂层的显微结构与性能研究[D]. 南昌: 南昌航空大学, 2016: 29-43.
GU Menghao.Investigation on microstructure and properties of ball milled Cu-Fe coating by laser cladding[D]. Nanchang: Nanchang Hangkong University, 2016: 29-43.
[27] 谢敏. 激光增材制造Cu-Fe偏晶合金凝固机制与性能调控研究[D]. 天津: 天津工业大学, 2021: 39-53.
XIE Min.Study on solidification mechanism and performance control of Cu-Fe monotectic alloy by laser additive manufacturing[D]. Tianjin: Tiangong University, 2021: 39-53.
[28] ANOOP R K, DORA M, ANDREAS W, et al.In-situ synthesis via laser metal deposition of a lean Cu-3.4Cr-0.6Nb(at.%) conductive alloy hardened by Cr nano-scale precipitates and by laves phase micro-particles[J]. Acta Materialia, 2020, 197: 330-340.
[29] LI B Y, ZHENG H, HAN C J, et al.Nanotwins-containing microstructure and superior mechanical strength of a Cu-9Al-5Fe-5Ni alloy additively manufactured by laser metal deposition[J]. Additive Manufacturing, 2021, 39: 101825.
[30] LIU Y T, YE Z G, WANG X, et al.Microstructure and mechanical behavior of Cu-9Al-4Ni-3.5Fe-0.5Mn alloy fabricated by laser melting deposition[J]. Materials Science & Engineering A, 2021, 826: 142006.
[31] LODES M A, GUSCHLBAUER R, KOERNER C.Process development for the manufacturing of 99.94% pure copper via selective electron beam melting[J]. Materials Letters, 2015, 143(15): 298-301.
[32] GUSCHLBUER R, MOMENI S, OSMANLIC F, et al.Process development of 99.95% pure copper processed via selective electron beam melting and its mechanical and physical properties[J]. Materials Characterization, 2018, 143: 163-170.
[33] LEDFORD C, ROCK C, TUNG M, et al.Evaluation of electron beam powder bed fusion additive manufacturing of high purity copper for overhang structures using in-situ real time backscatter electron monitoring[J]. Procedia Manufacturing, 2020, 48: 828-838.
[34] 黄柯, 张昌松, 赵阳, 等. 铜合金模具材料电子束选区熔化成形件耐磨性及机理分析[J]. 模具制造, 2019(3): 86-89.
HUANG Ke, ZHANG Changsong, ZHAO Yang, et al.Wear resistance and mechanism analysis of copper alloy die material forming parts by electron beam selective melting[J]. Die & Mould Manufacture, 2019(3): 86-89.
[35] RAMIREZ D A, WICKER R B, GAYTAN S M, et al.Open-cellular copper structures fabricated by additive manufacturing using electron beam melting[J]. Materials Science and Engineering A, 2011, 528(16/17): 5379-5386.
[36] KUMAR A, BAI Y, EKLUND A, et al.Effects of hot isostatic pressing on copper parts fabricated via binder jetting[J]. Procedia Manufacturing, 2017, 10: 935-944.
[37] BAI Y, VIRGINIA T, BLACK V, et al.An exploration of binder jetting of copper[J]. Rapid Prototyping Journal, 2015, 21: 177-185.
[38] MIYANAJI H, MA D, MARK A, et al.Binder jetting additive manufacturing of copper foam structures[J]. Additive Manufacturing, 2020, 32: 100960.
[39] LI M, HUANG J C, FANG A, et al.Binder jetting additive manufacturing of copper/diamond composites: an experimental study[J]. Journal of Manufacturing Processes, 2021, 70: 205-213.
[40] THANG Q, TRAN A C, JEREMY K Y, et al.3D printing of highly pure copper[J]. Metals, 2019, 9(7): 756-756.
[41] HENRY C D, DAVID L E, WILLIAM S L.Comparison of GRCop-84 to other Cu alloys with high thermal conductivies[J]. Journal of Materials Engineering and Performance, 2007, 17(4): 594-606.
[42] SHI K Y, XUE L H, YAN Y W, et al.Preparation and arc erosion characteristics of ultrafine crystalline CuCr50 Alloy by MA-SPS[J]. Journal of Wuhan University of Technology, 2016, 31(5): 1081-1085.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn