首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

Cu-Cr-Nb合金选区激光熔融工艺参数优化

  • 任亚科 ,
  • 刘祖铭 ,
  • 张亚洲 ,
  • 艾永康 ,
  • 叶书鹏 ,
  • 李建 ,
  • 彭伟才
展开
  • 1.中南大学 粉末冶金国家重点实验室,长沙 410083;
    2.长沙米淇仪器设备有限公司,长沙 410219

收稿日期: 2021-06-02

  修回日期: 2021-09-26

  网络出版日期: 2022-02-28

基金资助

中国工程院重点项目(2019-XZ-11); 金属材料磨损控制与成型技术国家地方联合工程研究中心开放基金资助项目(HKDNM201907); 粉末冶金国家重点实验室自主课题; 国家重点研发计划(2016YFB0301300)

Optimization of process parameters for selective laser melting of Cu-Cr-Nb alloy

  • REN Yake ,
  • LIU Zuming ,
  • ZHANG Yazhou ,
  • AI Yongkang ,
  • YE Shupeng ,
  • LI Jian ,
  • PENG Weicai
Expand
  • 1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
    2. Changsha Mitr Instrument Equipment Co., Ltd., Changsha 410219, China

Received date: 2021-06-02

  Revised date: 2021-09-26

  Online published: 2022-02-28

摘要

采用选区激光熔融(SLM)对氩气雾化Cu-1.93Cr-0.74Nb(摩尔分数)合金粉末进行成形,研究激光功率、扫描速率和扫描间距等工艺参数对试样相对密度、熔池形貌和微观结构的影响。结果表明,SLM工艺参数对Cu-1.93Cr-0.74Nb合金相对密度、冶金缺陷和显微组织的影响呈现非线性关系。当激光功率由300 W上升至400 W时,或扫描速率由500 mm/s上升至1 100 mm/s时,成形件相对密度先升高后降低,孔洞数量和尺寸也呈现出类似的变化规律。相对密度与熔池道的连续性、孔洞数量和尺寸等密切相关。最优参数为激光功率330 W、扫描速率800 mm/s和扫描间距0.1 mm,所制备的Cu-1.93Cr-0.74Nb合金的相对密度达到99.3%,具有以大尺寸晶粒为中心,边缘分布着细小晶粒构成的双峰尺寸晶粒核壳结构和强{110}织构。织构指数和织构强度分别为9.319和7.812。

本文引用格式

任亚科 , 刘祖铭 , 张亚洲 , 艾永康 , 叶书鹏 , 李建 , 彭伟才 . Cu-Cr-Nb合金选区激光熔融工艺参数优化[J]. 粉末冶金材料科学与工程, 2022 , 27(1) : 66 -76 . DOI: 10.19976/j.cnki.43-1448/TF.2021052

Abstract

Cu-1.93Cr-0.74Nb (mole fraction, %) alloy was prepared by selective laser melting (SLM) using Ar-gas atomized powders. The effects of laser power, scanning speed and scanning spacing on the relative density, molten pool morphology, and microstructure of as-built samples were investigated. The results show that the effects of SLM process parameters on the relative density, metallurgical defects and microstructure of as-built Cu-1.93Cr-0.74Nb alloy are nonlinear. The relative density of as-built sample increases first and then decreases with increasing the laser power from 300 W to 400 W, or the scanning speed from 500 mm/s to 1 100 mm/s. The number and size of pore also shows a similar change rule. The relative density is closely related to the continuity of melting pool, the number and size of pore. The relative density of as-built Cu-1.93Cr-0.74Nb alloy prepared by optimum parameters of the laser power of 330 W, the scanning speed of 800 mm/s and the scanning space of 0.1 mm, reaches 99.3%. It has a bimodal core-shell structure and a strong {110} texture with a large-sized grain as the center and fine grains distributed on the shell. The texture index and texture strength are 9.319 and 7.812, respectively.

参考文献

[1] TENWICK M J, DAVIES H A.Enhanced strength in high conductivity copper alloys[J]. Materials Science and Engineering A, 1988, 98: 543-546.
[2] CHOI J H.Aging behavior and precipitate analysis of copper-rich Cu-Fe-Mn-P alloy[J]. Materials Science and Engineering A, 2012, 550:183-190.
[3] KIM H G, HAN S Z, EUH K, et al.Effects of C addition and thermo-mechanical treatments on microstructures and properties of Cu-Fe-P alloys[J]. Materials Science and Engineering A, 2011, 530: 652-658.
[4] FU H, XU S, LI W, et al.Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy[J]. Materials Science and Engineering A, 2017, 700: 107-115.
[5] 赵凡, 刘祖铭, 吕学谦, 等. 粉末冶金Cu-Cr-Zr合金的形变热处理组织及性能[J]. 粉末冶金材料科学与工程, 2019, 24(4): 385-390.
ZHAO Fan, LIU Zuming, LÜ Xueqian, et al.Microstructure and properties of powder metallurgical Cu-Cr-Zr alloy by heat-treatment and deformation[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4): 385-390.
[6] LEI Q, LI Z, DAI C, et al.Effect of aluminum on microstructure and property of Cu-Ni-Si alloys[J]. Materials Science and Engineering A, 2013, 572: 65-74.
[7] WANG W, KANG H, CHEN Z, et al.Effects of Cr and Zr additions on microstructure and properties of Cu-Ni-Si alloys[J]. Materials Science and Engineering A, 2016, 673: 378-390.
[8] JANOVSZKY D, TOMOLYA K, SVEDA M, et al.Effect of Y and Ni addition on liquid immiscibility in Cu-Zr-Ag ternary alloys[J]. Journal of Alloys and Compounds, 2014, 615: S616-S620.
[9] LI H, JIE J, CHEN H, et al.Effect of rotating magnetic field on the microstructure and properties of Cu-Ag-Zr alloy[J]. Materials Science and Engineering A, 2015, 624: 140-147.
[10] DEGROH H C, ELLIS D L, LOEWENTHAL W S.Comparison of grcop-84 to other Cu alloys with high thermal conductivities[J]. Journal of Materials Engineering and Performance, 2007, 17(4): 594-606.
[11] SHUKLA A K, SHARMA V M J, MURTY S V S N, et al. Integrity of structural and thermo-structural materials for indian space programme[J]. Procedia Engineering, 2014, 86: 8-17.
[12] DENG H, YI J, XIA C, et al.Mechanical properties and microstructure characterization of well-dispersed carbon nanotubes reinforced copper matrix composites[J]. Journal of Alloys and Compounds, 2017, 727: 260-268.
[13] REN S, CHEN J, HE X, et al.Effect of matrix-alloying-element chromium on the microstructure and properties of graphite flakes/copper composites fabricated by hot pressing sintering[J]. Carbon, 2018, 127: 412-423.
[14] 彭刚, 蔡晓兰, 周蕾, 等. 粉末冶金CNTs/Cu复合材料的显微组织与力学性能[J]. 粉末冶金材料科学与工程, 2016, 21(1): 129-136.
PENG Gang, CAI Xiaolan, ZHOU Lei, et al.Microstructure and mechanical properties of CNTs/Cu composites fabricated by powder metallurgy[J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(1): 129-136.
[15] SHUKLA A K, NARAYANA MURTY S V S, SHARMA S C, et al. The serrated flow and recrystallization in dispersion hardened Cu-Cr-Nb alloy during hot deformation[J]. Materials Science and Engineering A, 2016, 673: 135-140.
[16] ELLIS D L, CARTER J L W, FERRY M H. A statistical study of the effects of processing upon the creep properties of GRCop-84[J]. Materials Science and Engineering A, 2015, 640: 1-15.
[17] DHOKEY N B, SARVE S N, LAMSOGE H A.Development of in-situ synthesis of Cr2Nb reinforced copper alloy by aluminothermic process[J]. Transactions of the Indian Institute of Metals, 2011, 64(4/5): 425-429.
[18] DHOKEY N B, SARVE S N, LAMSOGE H A.In-situ Synthesis of Cr2Nb reinforced copper alloy by liquid metallurgy route[J]. Materials Science Forum, 2012, 710: 143-148.
[19] SHUKLA A K, NARAYANA MURTY S V S, SURESH KUMAR R, et al. Effect of powder milling on mechanical properties of hot-pressed and hot-rolled Cu-Cr-Nb alloy[J]. Journal of Alloys and Compounds, 2013, 580: 427-434.
[20] SHUKLA A K, NARAYANA MURTY S V S, SURESH KUMAR R, et al. Densification behavior and mechanical properties of Cu-Cr-Nb alloy powders[J]. Materials Science and Engineering A, 2012, 551: 241-248.
[21] SHUKLA A K, SAMUEL M G, SURESH KUMAR R, et al.Effect of powder oxidation on densification and properties of vacuum hot pressed Cu-Cr-Nb alloy[J]. Materials Science and Engineering A, 2013, 561: 452-459.
[22] LÜ X Q, LIU Z M, LEI T, et al.Effect of heat treatment on Cr2Nb phase and properties of spark plasma sintered Cu-2Cr-1Nb alloy[J]. Materials, 2020, 13(12): 2860.
[23] 田杰, 黄正华, 戚文军, 等. 金属选区激光熔化的研究现状[J]. 材料导报, 2017, 31(29): 90-101.
TIAN Jie, HUANG Zhenghua, QI Wenjun, et al.Research progress on selective laser melting of metal[J]. Materials Reports, 2017, 31(29): 90-101.
[24] ZHANG S, ZHU H, ZHANG L, et al.Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting[J]. Materials Letters, 2018, 237: 306-309.
[25] SCUDINO S, UNTERDöRFER C, PRASHANTH K G, et al. Additive manufacturing of Cu-10Sn bronze[J]. Materials Letters, 2015, 156: 202-204.
[26] JADHAV S D, DHEKNE P P, BRODU E, et al.Laser powder bed fusion additive manufacturing of highly conductive parts made of optically absorptive carburized CuCr1 powder[J]. Materials & Design, 2021, 198: 109369.
[27] IKESHOJI T-T, NAKAMURA K, YONEHARA M, et al.Selective laser melting of pure copper[J]. Journal of Metals, 2018, 70(3): 396-400.
[28] UCHIDA S, KIMURA T, NAKAMOTO T, et al.Microstructures and electrical and mechanical properties of Cu-Cr alloys fabricated by selective laser melting[J]. Materials & Design, 2019, 175: 107815.
[29] MA Z, ZHANG K, REN Z, et al.Selective laser melting of Cu-Cr-Zr copper alloy: parameter optimization, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2020, 828: 154350.
[30] DINDA G P, DASGUPTA A K, MAZUMDER J.Texture control during laser deposition of nickel-based superalloy[J]. Scripta Materialia, 2012, 67(5): 503-506.
[31] BAHL S, MISHRA S, YAZAR K U, et al.Non-equilibrium microstructure, crystallographic texture and morphological texture synergistically result in unusual mechanical properties of 3D printed 316L stainless steel[J]. Additive Manufacturing, 2019, 28: 65-77.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn