[1] YANG Z, ZHAO X, TAO W, et al.Comparative study on successive and simultaneous double-sided laser beam welding of AA6056/AA6156 aluminum alloy T-joints for aircraft fuselage panels[J]. International Journal of Advanced Manufacturing Technology, 2018, 97(1/4): 845-856.
[2] ZHANG J, SONG B, WEI Q, et al.A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends[J]. Journal of Materials Science & Technology, 2019, 35(2): 270-284.
[3] 周旭, 刘祖铭, 黄兰萍, 等. Al-Cu-Mg-Mn-Sc-Zr铝合金的流变行为与热加工图[J]. 粉末冶金材料科学与工程, 2021, 133(4): 372-380.
ZHOU Xu, LIU Zuming, HUANG Lanping, et al.Hot deformation behavior and processing map of Al-Cu-Mg-Mn- Sc-Zr aluminium alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 133(4): 372-380.
[4] WANG Y, WANG Y T, LI R D, et al.Hall-Petch relationship in selective laser melting additively manufactured metals: Using grain or cell size[J]. Journal of Central South University (English Edition), 2021, 28(4): 1043-1057.
[5] CARROLL B E, PALMER T A, BEESE A M.Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309-320.
[6] BRANDL E, PALM F, MICHAILOV V, et al.Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire[J]. Materials & Design, 2011, 32(10): 4665-4675.
[7] 任仲贺, 武美萍, 崔宸, 等. 激光熔覆温度场和CeO2、TiO2对材料相变的影响[J]. 中国激光, 2019, 46(8): 118-125.
REN Zhonghe, WU Meipingping, CUI Chen, et al.Effects of temperature field and CeO2, TiO2 on material phase transition in laser cladding[J]. Chinese Journal of Lasers, 2019, 46(8): 118-125.
[8] 赖境, 路媛媛, 张航, 等. 低热输入脉冲激光修复高温合金液化裂纹研究[J]. 中国激光, 2019, 46(4): 116-124.
LAI Jing, LU Yuanyuan, ZHANG Hang, et al.Liquation cracks in superalloys repaired by low-heat input pulsed laser[J]. Chinese Journal of Lasers, 2019, 46(4): 116-124.
[9] 刘丰刚, 林鑫, 宋衎, 等. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
LIU Fenggang, LIN Xin, SONG Kan, et al.Microstructure and mechanical properties of laser forming repaired 300M steel[J]. Acta Metallurgica Sinica, 2017, 53(3): 325-334.
[10] 熊果, 谢丰伟, 袁紫仁, 等. 激光熔覆无碳Fe-Co-Mo高速钢涂层的组织结构与性能[J]. 粉末冶金材料科学与工程, 2021, 130(1): 84-90.
XIONG Guo, XIE Fengwei, YUAN Ziren, et al.Microstructure and properties of carbon-free Fe-Co-Mo high speed steel coating prepared by laser cladding[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 130(1): 84-90.
[11] SABOORI A, AVERSA A, MARCHESE G, et al.Application of directed energy deposition-based additive manufacturing in repair[J]. Applied Sciences-Basel, 2019, 9(16): 3316.
[12] SINGH A, RAMAKRISHNAN A, BAKER D, et al.Laser metal deposition of nickel coated Al 7050 alloy[J]. Journal of Alloys and Compounds, 2017, 719: 151-158.
[13] ZADPOOR A A.Frontiers of additively manufactured metallic materials[J]. Materials, 2018, 11(9): 1566.
[14] PENG X, GUO Q, LIANG X, et al.Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2017, 688: 146-154.
[15] ZHANG Y, JIN S, TRIMBY P W, et al.Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion[J]. Acta Materialia, 2019, 162: 19-32.
[16] 林泽桓, 李瑞迪, 祝弘滨, 等. 送粉式激光增材制造Al- Mg-Sc-Zr合金的微观组织与力学性能[J]. 中南大学学报(自然科学版), 2020, 315(11): 3055-3063.
LIN Zehuan. LI Ruidi, ZHU Hongbin, et al.Microstructure and mechanical properties of Al-Mg-Sc-Zr alloy by powder feeding laser additive manufacturing[J]. Journal of Central South University (Science and Technology), 2020, 315(11): 3055-3063.
[17] 杜刚, 杨文, 闫德胜, 等. 铸态Al-Mg-Sc-Zr合金退火过程中的硬化行为[J]. 金属学报, 2011, 47(3): 311-316.
DU Gang, YANG Wen, YAN Desheng, et al.Hardening behavior of the as-cast Al-Mg-Sc-Zr alloy[J]. Acta Metallurgica Sinica, 2011, 47(3): 311-316.
[18] 陈琴, 潘清林, 王迎, 等. 微量Sc和Zr对Al-Mg-Mn合金组织与力学性能的影响[J]. 中国有色金属学报, 2012, 22(6): 1555-1563.
CHEN Qin, PAN Qinglin, WANG Ying, et al.Effects of minor scandium and zirconium on microstructure and mechanical properties of Al-Mg-Mn alloys[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(6): 1555-1563.
[19] ZHANG W, XING Y, JIA Z H, et al.Effect of minor Sc and Zr addition on microstructure and properties of ultra-high strength aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3866-3871.
[20] LATHABAI S, LLOYD P G.The effect of scandium on the microstructure, mechanical properties and weldability of a cast Al-Mg alloy[J]. Acta Materialia, 2002, 50(17): 4275-4292.
[21] ZAKHAROV V V, ROSTOVA T D.Effect of scandium, transition metals, and admixtures on strengthening of aluminum alloys due to decomposition of the solid solution[J]. Metal Science and Heat Treatment, 2007, 49(9/10): 435-442.
[22] HARADA Y, DUNAND D C.Microstructure of Al3Sc with ternary transition-metal additions[J]. Materials Science and Engineering A, 2002, 329: 686-695.
[23] ZHAO T, DAHMEN M, CAI W, et al.Laser metal deposition for additive manufacturing of AA5024 and nanoparticulate TiC modified AA5024 alloy composites prepared with balling milling process[J]. Optics & Laser Technology, 2020, 131: 106438.
[24] ZHANG L, LI X, NIE Z, et al.Comparison of microstructure and mechanical properties of TIG and laser welding joints of a new Al-Zn-Mg-Cu alloy[J]. Materials & Design, 2016, 92: 880-887.
[25] 徐力栋. 高强度铝合金焊接结构激光修复接头组织与性能研究[D]. 西安: 西南交通大学, 2018: 27-38.
XU Lidong.Study on microstructure and properties of welding joint of laser repair of high-strength aluminum alloy[D]. Xi'an: Southwest Jiaotong University, 2018: 27-38.