首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

注射成形生物可降解Fe-Mn合金的制备及性能

  • 章也 ,
  • 李东阳 ,
  • 李益民 ,
  • 罗丰华 ,
  • 舒畅 ,
  • 李松
展开
  • 1.中南大学 粉末冶金国家重点实验室,长沙 410083;
    2.中南大学 湘雅二医院血管外科,长沙 410011

收稿日期: 2021-10-28

  修回日期: 2021-11-10

  网络出版日期: 2021-12-10

基金资助

中南大学研究生科研创新项目(1053320210046); 长沙市“揭榜挂帅”重大科技项目(kq2102003); 战略性新兴产业科技攻关与重大科技成果转化项目(2019GK4002)

Preparation and properties of biodegradable Fe-Mn alloy by injection molding

  • ZHANG Ye ,
  • LI Dongyang ,
  • LI Yimin ,
  • LUO Fenghua ,
  • SHU Chang ,
  • LI Song
Expand
  • 1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
    2. Department of Vascular Surgery of the Second Xiangya Hospital, Central South University, Changsha 410011, China

Received date: 2021-10-28

  Revised date: 2021-11-10

  Online published: 2021-12-10

摘要

作为生物可降解材料,Fe-Mn合金具备良好的力学性能和生物相容性,受到广泛关注。本文采用注射成形制备Fe-xMn (x=25,30,35,质量分数,下同)合金,研究烧结时间对Fe-Mn合金显微组织、力学性能和体外静态降解性能的影响。研究表明:烧结时间对Fe-Mn合金相组成无明显影响,而Mn含量影响合金的相组成,Fe-35Mn合金主要由奥氏体组成。注射成形Fe-Mn合金平均晶粒尺寸约为10~20 μm,表面Mn损失约为5.8%~10.82%。烧结时间为7 h时,Fe-35Mn合金力学性能最佳,抗拉强度达到358 MPa,伸长率为10.83%,体外静态浸泡降解实验显示,该合金浸泡一天降解速率为1 mm/y,且随腐蚀产物堆积而逐渐降低。

本文引用格式

章也 , 李东阳 , 李益民 , 罗丰华 , 舒畅 , 李松 . 注射成形生物可降解Fe-Mn合金的制备及性能[J]. 粉末冶金材料科学与工程, 2022 , 27(1) : 102 -110 . DOI: 10.19976/j.cnki.43-1448/TF.2021089

Abstract

Fe-Mn alloy as a kind of biodegradable material has attracted extensive attention owing to its good mechanical properties and biocompatibility. In this paper, the Fe-xMn (x=25, 30, 35,mass fraction, the same below) alloys were prepared by injection molding. The effect of sintering time on the microstructure, mechanical properties and in vitro static degradation properties of Fe-Mn alloys was studied. The results show that sintering time has few effects on the phase composition of Fe-Mn alloys. However, Mn content affects the phase composition of the alloys. Fe-35Mn alloys are mainly composed of austenite. The average grain size of Fe-Mn alloys prepared by injection molding is about 10-20 μm, and Mn loss is about 5.8%-10.82% on the surface. When the sintering time is 7 h, the Fe-35Mn alloy possesses the optimal mechanical properties involving the tensile breaking strength of 358 MPa and the elongation of 10.83%. The 30-day static immersion degradation tests show that the degradation rate of the alloy is 1 mm/y after soaking for one day, and gradually decreases with the accumulation of corrosion products.

参考文献

[1] LI Z J, GU X N, LOU S Q, et al.The development of binary Mg-Ca alloys for use as biodegradable materials within bone[J]. Biomaterials, 2008, 29(10): 1329-1344.
[2] SARAH E, HENDERSON A, KONSTANTIONS V B, et al.Magnesium alloys as a biomaterial for degradable craniofacial screws[J]. Acta Biomaterialia, 2014, 10(5): 2323-2332.
[3] YANG H T, WANG C, LIU C Q, et al.Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model[J]. Biomaterials, 2017, 145: 92-105.
[4] SCHRANZ D, ZARTNER P, MICHEL-BEHNKE I, et al.Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn[J]. Catheterization and Cardiovascular Interventions, 2010, 67(5): 671-673.
[5] 徐文利, 吴竞尧, 谭丽丽, 等. 可降解铁基心血管支架材料的研究进展[J]. 材料导报, 2012, 26(1): 75-78.
XU Wenli, WU Jingyao, TAN Lili, et al.Research progress on iron-based biodegradable coronary stents[J]. Materials Review, 2012, 26(1): 75-78.
[6] GONG H B, WANG K, STRICH R, et al.In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015, 103(8): 1632-1640.
[7] PEUSTER M, WOHLSEIN P, EHLERDING M, et al.A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits[J]. Heart, 2001, 86(5): 563-569.
[8] SCHINHAMMER M, HANZI A C, LOFFERR J F, et al.Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta Biomaterialia, 2010, 6(5): 1705-1713.
[9] LIU B, ZHENG Y F.Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron[J]. Acta Biomaterialia, 2011, 7(3): 1407-1420.
[10] HERMAWAN H, PURNAMA A, DUBE D, et al.Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies[J]. Acta Biomaterialia, 2010, 6(5): 1852-1860.
[11] RABINKIN A.On magnetic contributions to γ→ε phase transformations in Fe-Mn alloys[J]. Calphad-Computer Coupling of Phase Diagrams & Thermochemistry, 1979, 3(2): 77-84.
[12] HERMAWAN H, ALAMDARI H, MANTOVANI D, et al.Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy[J]. Powder Metallurgy, 2008, 51(1): 38-45.
[13] HERMAWAN H, PURNAMA A, DUBE D, et al.Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies[J]. Acta Biomaterialia, 2010, 6(5): 1852-1860.
[14] ZHANG Q, CAO P.Degradable porous Fe-35wt.% Mn produced via powder sintering from NH4HCO3 porogen[J]. Materials Chemistry Physics, 2015, 163: 394-401.
[15] DRYNDA A, HASSEL T, BACH F W, et al.In vitro and in vivo corrosion properties of new iron-manganese alloys designed for cardiovascular applications[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015, 103(3): 649-660.
[16] LIU B, ZHENG Y F, RUAN L Q.In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material[J]. Materials Letters, 2011, 65(3): 540-543.
[17] CAPEK J, KUBASEK J, DALIBOR V, et al.Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(wt.%) alloy[J]. Materials Science & Engineering C, 2016, 58: 900-908.
[18] 舒畅, 蔡文武, 何昊, 等. 粉末冶金注射成型技术制备的新型血管内支架的动物应用研究[J ].中国普通外科杂, 2017, 26(2): 205-212.
SHU Chang, CAI Wenwu, HE Hao, et al.Application of a novel intravascular stent prepared by metal powder injection molding in animals[J]. Chinese Journal of General Surgery, 2017, 26(2): 205-212.
[19] MARIOT P, LEEFLANG M A, SCHAEFFER L, et al.An investigation on the properties of injection-molded pure iron potentially for biodegradable stent application[J]. Powder Technology, 2016, 294: 226-235.
[20] HERMAWAN H, DUBE D, MANTOVANI D. Development of degradable Fe-35Mn alloy for biomedical application[J]. Advanced Materials Research, 2007, 15/17: 107-112.
[21] HERMAWAN H, DUBE D, MANTOVANI D.Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents[J]. Journal of Biomedical Materials Research Part A, 2009, 93(1): 1-11.
[22] 曲选辉, 陈晓玮, 章林, 等. 一种低氧含量的母合金法制备MIM418合金的方法: 中国, 201611100809.7[p].2018-03-13.
QU Xuanhui, CHEN Xiaowei, ZHANG Lin, et al. The method of mother alloy prepared MIM418 a low oxygen content alloy: Chain, 201611100809.7[p].2018-03-13.
[23] 李梦珊, 范景莲, 刘涛, 等. Mn含量对Cu-Mn合金结构与性能的影响[J]. 粉末冶金材料科学与工程, 2016, 21(4): 541-545.
LI Mengshan, FAN Jinglian, LIU Tao, et al.Effect of Mn content on microstructure and properties of Cu-Mn alloys[J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(4): 541-545.
[24] THIBON I, GUILLOU A, GLORIANT T.Interdiffusion in the FCC phase of Cu-Mn binary alloys[J]. Journal of Phase Equilibria & Diffusion, 2012, 33(4): 303-309.
[25] 孔令种, 邓志银, 朱苗勇. 中高锰钢在真空精炼过程中的气化行为[J]. 特殊钢, 2018, 39(4): 17-19.
KONG Lingzhong, DENG Zhiyin, ZHU Miaoyong.Vaporization behaviors of manganese in medium and high Mn steel grades during vacuum treatment[J]. Special Steel, 2018, 39(4): 17-19.
[26] 侯少良. 真空感应熔炼中锰的挥发与控制[J]. 上海金属, 1992, 14(2): 60-61.
HOU Shaoliang.Vapourization and control of manganese in vacuum induction melting[J]. Shanghai Metals, 1992, 14(2): 60-61.
[27] 王信才. 功能材料Fe-Mn合金试制工艺研究[J]. 特钢技术, 2010, 16(1): 21-23.
WANG Xingcai.Discussion on quality control of function materials Fe-Mn alloy during trial production[J]. Special Steel Technology, 2010, 16(1): 21-23.
[28] 李冬冬, 钱立和, 刘帅, 等. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
LI Dongdong, QIAN Lihe, LIU Shuai, et al.Effect of manganese content on tensile deformation behavior of Fe-Mn-C TWIP steels[J]. Acta Metallurgica Sinica, 2018, 54(12): 1777-1784.
[29] KURAMOTO S, FURUTA T, HWANG J H, et al.Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy[J]. Metallurgical & Materials Transactions A, 2006, 37(3): 657-662.
[30] BOWEN P K, SHEARIER E R, ZHAO S, et al.Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys[J]. Advanced Healthcare Materials, 2016, 5(10): 1121-1140.
[31] 李涵, 王烨欣, 崔振山, 等. 喷射成形制备Fe-35Mn合金的体外降解行为及生物相容性[J]. 腐蚀科学与防护技术, 2018, 30(3): 244-250.
LI Han, WANG Yexin, CUI Zhenshan, et al.In vitro degradation and biocompatibility of Fe-35Mn alloy prepared by spray forming[J]. Corrosion Science and Protection Technology, 2018, 30(3): 244-250.
[32] 陈连喜. 含锶生物医用镁合金的性能及其应力腐蚀行为研究[D]. 广州: 暨南大学, 2017.
CHEN Lianxi.Study on properties and stress corrosion behavior of strontium-containing biomedical magnesium alloys[D]. Guangzhou: Jinan University, 2017.
[33] 高家诚, 伍沙, 乔丽英, 等. 镁及镁合金在仿生体液中的腐蚀降解行为[J]. 中国组织工程研究与临床康复, 2007, 18(2): 3584-3586.
GAO Jiacheng, WU Sha, QIAO Liying, et al.Corrosion behavior of magnesium and its alloy simulated body fluid[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2007, 18(2): 3584-3586.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn