首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

Ni/Bi0.4Sb1.6Te3热电材料的界面性能

  • 况志祥 ,
  • 马燕 ,
  • 徐晨辉 ,
  • 孔栋 ,
  • 冯波 ,
  • 樊希安
展开
  • 1.武汉科技大学 省部共建耐火材料与冶金国家重点实验室,武汉 430081;
    2.武汉科技大学 钢铁冶金及资源利用省部共建教育部重点实验室,武汉 430081

收稿日期: 2021-10-21

  修回日期: 2021-12-12

  网络出版日期: 2021-12-06

基金资助

国家重点研发计划“科技助力经济2020”重点专项(SQ2020YFF0404755)

Interface performance of Ni/Bi0.4Sb1.6Te3 thermoelectric material

  • KUANG Zhixiang ,
  • MA Yan ,
  • XU Chenhui ,
  • KONG Dong ,
  • FENG Bo ,
  • FAN Xi'an
Expand
  • 1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China;
    2. Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China

Received date: 2021-10-21

  Revised date: 2021-12-12

  Online published: 2021-12-06

摘要

Bi0.4Sb1.6Te3热电材料和金属电极之间的阻挡层是热电器件稳定服役的控制性因素,本文以不同温度下退火后的高致密Ni箔和Bi0.4Sb1.6Te3合金为原料,采用放电等离子烧结扩散焊连接法在Bi0.4Sb1.6Te3表面制备Ni层作为Ni/ Bi0.4Sb1.6Te3电极接头的阻挡层。采用X射线衍射仪对阻挡层进行物相分析,用扫描电镜及能谱仪观察和分析电极接头的界面形貌与元素分布。结果表明,在700 ℃退火后的Ni箔具有优良的防扩散效果,扩散厚度为9 μm,用700 ℃退火后的Ni箔与Bi0.4Sb1.6Te3扩散焊结合,获得13.19 MPa的结合强度。随Ni箔的退火温度升高,Ni/Bi0.4Sb1.6Te3界面裂纹明显改善,这是由于随Ni箔退火温度升高,Ni与Bi0.4Sb1.6Te3之间的晶格失配得到改善,从而使Ni层与Bi0.4Sb1.6Te3的连接性能提高。

本文引用格式

况志祥 , 马燕 , 徐晨辉 , 孔栋 , 冯波 , 樊希安 . Ni/Bi0.4Sb1.6Te3热电材料的界面性能[J]. 粉末冶金材料科学与工程, 2022 , 27(1) : 77 -82 . DOI: 10.19976/j.cnki.43-1448/TF.2021085

Abstract

The barrier layer between the Bi0.4Sb1.6Te3 thermoelectric material and the metal electrode is the controlling factor for the stable service of the thermoelectric device. In this paper, the spark plasma sintering diffusion welding method was used to prepare a Ni layer on the Bi0.4Sb1.6Te3 surface as a barrier layer for the Ni/Bi0.4Sb1.6Te3 electrode joint, in which high-density Ni foil and Bi0.4Sb1.6Te3 alloy were used as the raw materials. The phase analysis of the barrier layer was performed using X-ray diffractometer. The interface morphology and element distribution of the electrode joints were analyzed by the scanning electron microscope and its energy spectrometer. The results show that the Ni foil annealed at 700 ℃ has excellent anti-diffusion effect, and the diffusion thickness is as low as 9 μm. The Ni foil annealed at 700 ℃ is combined with Bi0.4Sb1.6Te3 by diffusion welding to obtain a bonding strength of 13.19 MPa. As the annealing temperature of Ni foil increases, Ni/Bi0.4Sb1.6Te3 interface cracks are significantly improved. This is because the lattice mismatch between Ni/Bi0.4Sb1.6Te3 can be improved with the incresing annealing temperature of Ni foil, thereby the connection performance of the Ni layer and Bi0.4Sb1.6Te3 is improved.

参考文献

[1] 陈立东, 刘睿恒, 等. 史迅. 热电材料与器件[M]. 北京: 科学出版社, 2018: 1-14.
CHEN Lidong, LIU Ruiheng, SHI Xun, et al.Thermoelectric Materials and Devices[M]. Beijiang: Science Press, 2018: 1-14.
[2] 张建中. 温差电技术[M]. 天津: 天津科学技术出版社, 2013: 131-135, 219-224.
ZHANG Jianzhong.Thermoelectric Technology[M]. Tianjin: Tianjin Science and Technology Press, 2013: 131-135, 219-224.
[3] WOOD C.Materials for thermoelectric energy conversion[J]. Reports on Progress in Physics, 1988, 51(4): 459-539.
[4] BELL L E.Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461.
[5] MENG F, CHEN L, SUN F.A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities[J]. Energy, 2011, 36(5): 3513-3522.
[6] SNYDER G J, TOBERER E S.Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 101-110.
[7] GERLACH E A.Method to determine the contact areas of clusters deposited on a semiconducting substrate[J]. Physica Status Solidi, 1999, 176(2): 937-942.
[8] 周欢欢, 檀柏梅, 张建新, 等. Bi2Te3热电材料研究现状[J]. 半导体技术, 2011, 36(10): 765-770, 777.
ZHOU Huanhuan, TAN Baimei, ZHANG Jianxin, et al.Research status of Bi2Te3 thermoelectric materials[J]. Semiconductor Technology, 2011, 36(10): 765-770, 777.
[9] LIU W S, WANG H Z, WANG L J, et al.Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications[J]. Journal of Materials Chemistry A, 2013, 1(42): 13093-13100.
[10] BOHRA A K, BHATT R, SINGH A, et al.Transition from n-to p-type conduction concomitant with enhancement of figure-of-merit in Pb doped bismuth telluride: Material to device development[J]. Materials & Design, 2018, 159: 127-137.
[11] TAKAHASHI M, KATOU Y, NAGATA K, et al.The composition and conductivity of electrodeposited Bi/Te alloy films[J]. Thin Solid Films, 1994, 240(1/2): 70-72.
[12] TAKAHASHI M, MURAMATSU Y, SUZUKI T, et al.Preparation of Bi2Te3 films by electrode position from solution containing biethylenedia mine tetra acetic acid complex and TeO2[J]. Journal of the Electrochemical Society, 2003, 150(3): 169-174.
[13] CHEN S W, YANG T R, WU C Y, et al.Interfacial reactions in the Ni/(Bi0.25Sb0.75)2Te3 and Ni/Bi2(Te0.9Se0.1)3 couples[J]. Journal of Alloys and Compounds, 2016, 686: 847-853.
[14] LIN C F, HAU N Y, HUANG Y T, et al.Synergetic effect of Bi2Te3 alloys and electrodeposition of Ni for interfacial reactions at solder/Ni/Bi2Te3 joints[J]. Journal of Alloys and Compounds, 2017, 708: 220-230.
[15] FENG S P, CHANG Y H, YANG J, et al.Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials[J]. Physical Chemistry Chemical Physics, 2013, 15(18): 6757-6762.
[16] BOTTNER H, NURNUS J, GAVRIKOV A, et al.New thermoelectric components using microsystem technologies[J]. Journal of Microelectromechanical Systems, 2004, 13(3): 414-420.
[17] DICK B, BRETT M J, SMY T, et al.Periodic submicrometer structures by sputtering[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2001, 19(5): 1813-1819.
[18] HE M, CHEN Z, QI G.Solid state interfacial reaction of Sn-37Pb and Sn-3.5Ag solders with Ni-P under bump metallization[J]. Acta Materialia, 2004, 52(7): 2047-2056.
[19] ZHU X D, CAO L L, ZHU W, et al.Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance[J]. Advanced Materials Interfaces, 2018, 23(5): 1801279.
[20] ZOU H L, ROWE D M, GAO M.Growth of p-and n-type bismuth telluride thin films by co-evaporation[J]. Journal of Crystal Growth, 2001, 222(1/2): 82-87.
[21] LIN W P, WESOLOWSKI D E, LEE C C.Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules[J]. Journal of Materials Science: Materials in Electronics, 2011, 22(9): 1313-1320.
[22] VENKATASUBRAMANIAN R, COLPITTS T, WATKO E, et al.MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications[J]. Journal of Crystal Growth, 1997, 170(1/4): 817-821.
[23] KIM S, SOHN H S, SON I, et al.Influence of electroless Ni-P and Pd-P plating on the bonding strength of n-type Bi-Te thermoelements[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(10): 7603-7608.
[24] CHIEN P Y, YEH C H, HSU H H, et al.Polarity Effect in a Sn3Ag0.5Cu/Bismuth telluride thermoelectric system[J]. Journal of Electronic Materials, 2014, 43(1): 284-289.
[25] LIN W C, LI Y S, WU A T.Study of diffusion barrier for solder/n-type Bi2Te3 and bonding strength for p- and n-type thermoelectric modules[J]. Journal of Electronic Materials, 2018, 47(1): 148-154.
[26] ZHAO D G, TIAN C W, TANG S Q, et al.Fabrication of a CoSb3-based thermoelectric module[J]. Materials Science in Semiconductor Processing, 2010, 13(3): 221-224.
[27] TEWOLDE M, FU G, HWANG D J, et al.Thermoelectric device fabrication using thermal spray and laser micromachining[J]. Journal of Thermal Spray Technology, 2016, 25(3): 431-440.
[28] JIANG C P, FAN X A, RONG Z Z, et al.Elemental diffusion and service performance of Bi2Te3-based thermoelectric generation modules with flexible connection electrodes[J]. Journal of Electronic Materials, 2017, 46(2): 1363-1370.
[29] XIA H, CHEN C L, DRYMIOTIS F, et al.Interfacial reaction between Nb foil and n-type PbTe thermoelectric materials during thermoelectric contact fabrication[J]. Journal of Electronic Materials, 2014, 43(11): 4064-4069.
[30] XIA H, DRYMIOTIS F, CHEN C L, et al.Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications[J]. Journal of Materials Science, 2014, 49(4): 1716-1723.
[31] JIN S, HUANG M, KWON Y, et al.Colossal grain growth yields single-crystal metal foils by contact-free annealing[J]. Science, 2018, 362(6418): 1021-1025.
[32] 胡晓凯, 张双猛, 赵府, 等. 热电器件的界面和界面材料[J]. 无机材料学报, 2019, 34(3): 269-278.
HU Xiaokai, ZHANG Shuangmeng, ZHAO Fu, et al.Thermoelectric device: contact interface and interface materials[J]. Journal of Inorganic Materials, 2019, 34(3): 269-278.
[33] ZHOU H Y, MU X, ZHAO W Y, et al.Low interface resistance and excellent anti-oxidation of Al/Cu/Ni multilayer thin-film electrodes for Bi2Te3-based modules[J]. Nano Energy, 2017, 40: 274-281.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn