对氩气雾化Fe-14Cr-3W-0.4Ti(质量分数,%)合金粉末进行60 h机械球磨,在950 ℃对粉末进行热挤压成形,然后在950 ℃热轧制和1 050 ℃/1 h退火热处理,得到Fe-14Cr-3W-0.4Ti合金。利用扫描电镜和背散射电子衍射分析仪观察和分析合金的显微组织,并测定合金的室温拉伸性能,研究热轧变形对Fe-14Cr-3W-0.4Ti合金组织与力学性能的影响。结果表明,热轧变形可有效调控Fe-14Cr-3W-0.4Ti合金的晶粒尺寸,提高合金的力学性能。经过热轧变形的合金,晶粒明显细化,并且随热轧制变形量增加,晶粒尺寸先减小后增大,合金的抗拉强度也出现先升高后降低现象。合金的最佳热轧参数为950 ℃/40%,变形量为40%的合金平均晶粒尺寸最小,为1.39 μm,抗拉强度和伸长率分别达到1 161 MPa和9.5%,与挤压成形态合金相比,抗拉强度提高31.2%。
The atomized Fe-14Cr-3W-0.4Ti (mass fraction, %) alloy powder was subjected to mechanical ball milling for 60 h, hot extrusion forming at 950 ℃, hot rolling at 950 ℃ and annealing at 1 050 ℃/1 h to obtain Fe-14Cr-3W-0.4Ti alloy. The effects of hot rolling deformation on the microstructure and mechanical properties of Fe-14Cr-3W-0.4Ti alloy were studied by Scanning Electron Microscopy (SEM) and Electron Backscattering Diffraction (EBSD) analysis. The results show that hot rolling deformation can effectively control the grain size of Fe-14Cr-3W-0.4Ti alloy and improve the mechanical properties of the alloy. After hot rolling, the grain size of the extruded alloy is obviously refined, the grain size decreases first and then increases, and the tensile strength of the alloy also increases first and then decreases with the increase of hot rolling deformation, and the optimum hot rolling parameters of the alloy are 950 ℃/40%. After hot rolling at 950 ℃/40% deformation, the average grain size of the alloy is the smallest and for 1.39 μm, and the tensile strength and elongation of the alloy reach 1 161 MPa and 9.5%, respectively. The tensile strength is increased by 31.2% compared with that of the extruded alloy.
[1] FU J, BROUWER J C, RICHARDSON I M, et al.Effect of mechanical alloying and spark plasma sintering on the microstructure and mechanical properties of ODS Eurofer[J]. Materials and Design, 2019, 177: 107849.
[2] LI Z Y, LU Z, XIE R, et al.Effect of spark plasma sintering temperature on microstructure and mechanical properties of 14Cr-ODS ferriticsteels[J]. Materials Science & Engineering A, 2016, 660(1): 52-60.
[3] LO K H, SHE C H, LAI J K L. Recent developments in stainless steels[J]. Materials Science and Engineering R, 2009, 65(4/6): 39-104.
[4] RAJ B, VIJAYALAKSHMI M.Ferritic steels and advanced ferritic-martensitic steels[J]. Comprehensive Nuclear Materials, 2012(4): 97-121.
[5] XIA Y P, WANG X P, ZHUANG Z, et al.Microstructure and oxidation properties of 16Cr-5Al-ODS steel prepared by sol-gel and spark plasma sintering methods[J]. Journal of Nuclear Materials, 2013, 432(1/3):198-204.
[6] ZHAO Q, QIAO Z, LIU Y, et al.Characterization of 14Cr ODS steel fabricated by spark plasma sintering[J]. Metals, 2019, 9(2): 200.
[7] LI Y F, ZHANG J R, SHAN Y Y, et al.Anisotropy in creep properties and its microstructural origins of 12Cr oxide dispersion strengthened ferrite steels[J]. Journal of Nuclear Materials, 2019, 517(1): 107-314.
[8] XU H J, LU Z, WANG D M, et al.Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition[J]. Nuclear Engineering and Technology, 2017, 49(2):178-188.
[9] ODETTE G R, et al.Recent developments in irradiation-resistant steels[J]. Annual Review of Materials Research, 2008, 38: 471-503.
[10] 张守辉. 14Cr氧化物弥散强化铁素体钢的制备与组织性能研究[D]. 沈阳: 东北大学, 2011.
ZHANG S H.Study on Preparation and microstructure properties of 14Cr oxide dispersion strengthened ferritic steel[D]. Shenyang: Northeastern University, 2011.
[11] ONORO M, MACIAS J, AUGER MA, et al.Mechanical properties and stability of precipitates of an ODS steel after thermal cycling and aging[J]. Nuclear Materials and Energy, 2020, 24: 100758.
[12] 许国林. 冷轧变形量对Ti+P-IF钢组织和织构的影响[D]. 鞍山:辽宁科技大学, 2006.
XU Guolin.Effect of cold rolling deformation on microstructure and texture of Ti+P-IF steel[D]. An Shan: University of Science and Technology Liaoning, 2006.
[13] 吕立锋. 大变形温轧超细晶钢的制备及其组织与力学性能研究[D]. 上海: 上海交通大学, 2018.
LÜ Lifeng.Fabrication of ultrafine-grained steels through heavy warm rolling and the investigation on the microstructure and mechanical properties of steels[D]. Shanghai: Shanghai Jiaotong University, 2018.
[14] KOVAC F, DZUBINSKY M, BORUTA J.Prediction of low carbon steels behaviour under hot rolling service conditions[J]. Acta Materialia, 2003, 51(6): 1801-1808.
[15] 李全. ODS铁基合金的纳米氧化物形成机理及组织和力学性能研究[D]. 长沙: 中南大学, 2019.
LI Quan.Research on the formation mechanism of nano-oxides, microstructure and mechanical properties of ODS Fe-based alloys[D]. Changsha: Central South University, 2019.
[16] MASSIMO D S, ALESSANDRAF, GIANFRANCO L, et al.Mechanical characterization of a nano-ODS steel prepared by low-energy mechanical alloying[J]. Metals, 2017, 7(8): 283-289.
[17] SURYANARAYANA C.Non-equilibrium processing of materials[M]. Pergamon, 1999.
[18] 毛卫民, 赵新兵. 金属的再结晶与晶粒长大[M]. 北京: 冶金工业出版社, 1994.
MAO Weimin, ZHAO Xinbing.Recrystallization and Grain Growth of Metals[M]. Beijing: Metallurgical Industry Press, 1994.
[19] HUMPHREYS F J, HATHERLY M.Recrystallization and related annealing phenomena[M]. Amsterdam, Netherlands: Elsevier, 2004.