[1] 李新. 赤泥资源化利用与展望[J]. 资源信息与工程, 2020, 35(3): 133-135, 139.
LI Xin.The comprehensive utilization and prospect of red mud resources[J]. Nonferrous Metals Abstract, 2020, 35(3): 133-135, 139.
[2] 朱军, 兰建凯. 赤泥的综合回收与利用[J]. 矿产保护与利用, 2008 (2): 52-54.
ZHU Jun, LAN Jiankai.Comprehensive recovery and utilization of red mud[J]. Conservation and Utilization of Mineral Resources, 2008(2): 52-54.
[3] 肖雄, 张润宇, 龙健, 等. 赤泥治理地表水体与底泥磷污染的研究进展[J]. 矿物学报, 2017, 37(6): 764-770.
XIAO Xiong, ZHANG Runyu, LONG Jian, et al.Application of red mud in phosphorus pollution control of surface sewage and sediment[J]. Acta Mineralogica Sinica, 2017, 37(6): 764-770.
[4] ZHANG N, LI H, LIU X.Hydration mechanism and leaching behavior of bauxite-calcination-method red mud-coal gangue based cementitious materials[J]. Journal of Hazardous Materials, 2016, 314: 172-180.
[5] 罗丹, 李紫龙, 杜秋, 等. 赤泥综合利用研究进展[J]. 科技创新与应用, 2020(15): 75-76.
LUO Dan, LI Zilong, DU Qiu, et al.Research Progress on comprehensive utilization of red mud[J]. Technology Innovation and Application, 2020(15): 75-76.
[6] 王维, 刘伟, 张鹏飞, 等. 原料粒径与成分对赤泥/钢渣陶瓷材料结构与性能的影响[J]. 粉末冶金材料科学与工程, 2015, 20(5): 782-787.
WANG Wei, LIU Wei, ZHANG Pengfei, et al.Effects of particle size and composition of raw material on microstructure and properties of red mud /steel slag ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(5): 782-787.
[7] XIE W M, ZHOU F P, BI X L, et al.Accelerated crystallization of magnetic 4A-zeolite synthesized from red mud for application in removal of mixed heavy metal ions[J]. Journal of Hazardous Materials, 2018, 358(9): 441-449.
[8] 常军, 邵延海, 李硕, 等. 云南某赤泥还原焙烧-磁选试验研究[J]. 轻金属, 2017(8): 8-14.
CHANG Jun, SHAO Yanhai, LI Shuo, et al.Reduction roasting -magnetic separation study of red mud in Yunnan[J]. Light Metals, 2017(8): 8-14.
[9] 王洪, 佘雪峰, 赵晴晴, 等. 高铁赤泥直接还原制备珠铁[J]. 过程工程学报, 2012, 12(5): 816-821.
WANG Hong, YU Xuefeng, ZHAO Qingqing, et al.Production of iron nuggets using iron-rich red mud by direct reduction[J]. Chinese Journal of Process Engineering, 2012, 12(5): 816-821.
[10] 何奥平, 曾晓乐, 曾建民, 等. 拜耳法赤泥碳热还原制备铁合金[J]. 机械工程材料, 2016, 40(5): 47-51.
HE Aoping, ZENG Xiaole, ZENG Jianmin, et al.Preparation of iron alloy by carbothermic reduction from bayer red mud[J]. Materials For Mechanical Engineering, 2016, 40(5): 47-51.
[11] 庄锦强. 高铁氧化铝赤泥中铁回收技术研究[J]. 湖南有色金属, 2014, 30(2): 32-35, 71.
ZHUANG Jinqiang.Study on the technology of iron recovery from high iron content alumina red mud[J]. Hunan Nonferrous Metals, 2014, 30(2): 32-35, 71.
[12] OCHSENKÜHN-PETROPULU M, LYBEROPULU T, PARISSAKIS G. Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method[J]. Analytica Chimica Acta, 1995, 315(1/2): 231-237.
[13] 曹瑛, 李卫东, 刘艳改. 工业废渣赤泥的特性及回收利用现状[J]. 硅酸盐通报, 2007, 26(1): 143-145.
CAO Ying, LI Weidong, LI Yangai.Properties of red mud and current situation of its utilization[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(1): 143-145.
[14] 王延玲, 于存贞. 赤泥资源化应用技术关键及最新应用展望[J]. 轻金属, 2019(3): 13-15.
WANG Yanling, YU Cunzhen.Key technologies of red mud resource utilization and prospects of latest technologies[J]. Light Metals, 2019(3): 13-15.
[15] 李玉萍, 徐晓伟, 王碧燕, 等. LiF和CaF2助熔效果的研究[J]. 北京科技大学学报, 2002, 24(4): 429-431.
LI Yuping, XU Xiaowei, WAMG Biyan, et al.Research on the fluxed effect of LiF and CaF2[J]. Journal of University of Science and Technology Beijing, 2002, 24(4): 429-431.
[16] 何鹏, 居殿春, 沈朋飞, 等. 基于直接还原熔分的赤泥综合利用试验研究[J]. 冶金能源, 2017, 36(4): 57-60.
HE Peng, JU Dianchun, SHEN Pengfei, et al.Experimental research on comprehensive utilization of red mud based on direct reduction and melting by RHF iron bead technology[J]. Energy For Metallurgical Industry, 2017, 36(4): 57-60.
[17] LI X, XIAO W, LIU W, et al.Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5): 1342-1347.
[18] 罗星, 李尽善, 马荣锴, 等. 赤泥开发利用技术回顾与展望[J]. 矿产与地质, 2019, 33(1): 174-180.
LUO Xing, LI Jinshan, MA Rongkai, et al.Exploitation of red mud-a review[J]. Mineral Resources and Geology, 2019, 33(1): 174-180.
[19] 丁冲, 周卫宁, 单志强, 等. 还原焙烧赤泥-综合回收铁铝研究[J]. 矿冶工程, 2016(5): 103-106.
DING Chong, ZHOU Weining, SHAN Zhiqiang, et al.Recovery of iron and aluminum from red mud by reduction roasting[J]. Mining and Metallurgical Engineering, 2016(5): 103-106.
[20] 薛群虎, 陈延伟. 拜耳法高铁赤泥回收铁的试验研究[J]. 矿物岩石, 2011, 31(4): 7-12.
XUE Qunhu, CHEN Yanwei.Experimental study of iron recovering from high iron contained red mud by Bayer process[J]. Journal of Mineralogy and Petrology, 2011, 31(4): 7-12.
[21] 卢红波. 红土镍矿电炉还原熔炼镍铁合金的热力学研究[J]. 稀有金属, 2012, 36(5): 785-790.
LU Hongbo.Thermodynamic research on production of ferronickel alloy by electric furnace reduction from lateritic nickel ore[J]. Chinese Journal of Rare Metals, 2012, 36(5): 785-790.
[22] 郭亚光, 朱荣, 吕明, 等. 红土镍矿选择性还原--熔分制备镍铁合金[J]. 北京科技大学学报, 2014, 36(5): 584-591.
GUO Yaguang, ZHU Rong, LU Ming, et al.Extraction of a nickel-iron alloy from nickel laterite ore through selective reduction and smelting process[J]. Journal of University of Science and Technology Beijing, 2014, 36(5): 584-591.
[23] 倪文, 贾岩, 徐承焱, 等. 难选鲕状赤铁矿深度还原-磁选实验研究[J]. 北京科技大学学报, 2010, 32(3): 287-291.
NI Wen, JIA Yan, XU Chengyan, et al.Beneficiation of unwieldy oolitic hematite by deep reduction and magnetic separation process[J]. Journal of University of Science and Technology Beijing, 2010, 32(3): 287-291.
[24] 蒋波, 胡学文, 周乐育, 等. 0.6Ni中碳合金钢的奥氏体连续冷却转变行为[J]. 金属热处理, 2020, 45(4): 10-15.
JIANG Bo, HU Xuewen, ZHOU Leyu, et al.Continuous cooling transformation behavior of austenite in 0.6Ni alloyed medium carbon steel[J]. Heat Treatment of Metals, 2020, 45(4): 10-15.
[25] 刘伟, 伏利, 陈小明, 等. 激光熔覆FeCr和CoCr合金涂层的组织与性能[J]. 粉末冶金材料科学与工程, 2020, 25(3): 267-272.
LIU Wei, FU Li, CHEN Xiaoming, et al.Microstructure and properties of FeCr and CoCr laser cladding coatings[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(3): 267-272.