首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

氩气雾化制备新型镍基高温合金粉末的微观结构和性能

  • 农必重 ,
  • 张亚洲 ,
  • 刘祖铭 ,
  • 魏冰 ,
  • 曹镔
展开
  • 中南大学 粉末冶金国家重点实验室,长沙 410083

收稿日期: 2021-03-31

  修回日期: 2021-07-15

  网络出版日期: 2021-12-22

基金资助

中国工程院重点项目(2019-XZ-11); 金属材料磨损控制与成型技术国家地方联合工程研究中心开放基金资助项目(HKDNM201907); 粉末冶金国家重点实验室自主课题

Microstructure and properties of new nickel-based superalloy powder prepared by argon atomization

  • NONG Bizhong ,
  • ZHANG Yazhou ,
  • LIU Zuming ,
  • WEI Bing ,
  • CAO Bin
Expand
  • State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Received date: 2021-03-31

  Revised date: 2021-07-15

  Online published: 2021-12-22

摘要

采用氩气雾化制备Al、Ti总质量分数小于4%的选区激光熔融用新型镍基高温合金粉末,对粉末的成分、物相组成、形貌、微观结构和性能等进行分析和表征。结果表明,新型镍基高温合金粉末的Al、Ti总质量分数为3.82%。小粒径粉末(粒径<20 μm)内部结构致密,以胞状晶组织为主,成分均匀,显微硬度(HV)达到265。随粉末粒径增大,粉末内部树枝晶数量增多,少量大粒径(粒径>40 μm)粉末内部出现凝固缩孔和颗粒包覆缺陷。筛分后得到的粒径为15~44 μm的粉末,粒径分布集中,中位径DV50为19.7 μm,流动性和松装密度分别达到15.14 s/50 g和4.15 g/cm3

本文引用格式

农必重 , 张亚洲 , 刘祖铭 , 魏冰 , 曹镔 . 氩气雾化制备新型镍基高温合金粉末的微观结构和性能[J]. 粉末冶金材料科学与工程, 2021 , 26(6) : 547 -553 . DOI: 10.19976/j.cnki.43-1448/TF.2021044

Abstract

New nickel-based superalloy powder for selective laser melting with a total mass fraction of Al and Ti less than 4% was prepared by argon atomization. The composition, phase, morphology, microstructure and properties of the new nickel-based superalloy powder were characterized. The results show that the total mass fraction of Al and Ti in the new nickel-based superalloy powder was 3.82%. Small particle size powder (particle size<20 μm) has a compact interior structure, mainly cellular structure, and uniformly composition, and its micro-hardness (HV) reaches 265. As the particle size of the powder increases, the number of dendrites in the powder increases, and solidification shrinkage pore and particle-coating defect appear in some large-diameter (particle size>40 μm) powder. After sieving, the powder with a particle size of 15-44 μm has a concentrated particle size distribution, a median diameter DV50 of 19.7 μm, the flow- ability and apparent density are 15.14 s/50 g and 4.15 g/cm3, respectively.

参考文献

[1] 贾建, 陶宇, 张义文, 等. 第三代粉末冶金高温合金René104的研究进展[J]. 粉末冶金工业, 2007, 17(3): 36-43.
JIA Jian, TAO Yu, ZHANG Yiwen, et al.Recent development of the third generation P/M superalloy René104[J]. Powder Metallurgy Industry, 2007, 17(3): 36-43.
[2] 郭茂文, 刘春荣, 郑雪萍, 等. 粉末高温合金的研究现状[J]. 热加工工艺, 2017, 46(20): 11-13.
GUO Maowen, LIU Chunrong, ZHENG Xueping, et al.Research status of powder superalloys[J]. Hot Working Technology, 2017, 46(20): 11-13.
[3] 韩志宇, 曾光, 梁书锦, 等. 镍基高温合金粉末制备技术的发展现状[J]. 中国材料进展, 2014, 33(12): 748-755.
HAN Zhiyu, ZENG Guang, LIANG Shujin, et al.Development in powder production technology of Ni-based superalloy[J]. Materials China, 2014, 33(12): 748-755.
[4] DEBROY T, WEI H L, ZUBACK J S, et al.Additive manufacturing of metallic components-Process, structure and properties[J]. Progress in Materials Science, 2018, 92(5): 112-224.
[5] YAP C Y, CHUA C K, DONG Z L, et al.Review of selective laser melting: Materials and applications[J]. Applied Physics Reviews, 2015, 2(4): 041101.
[6] NI M, CHEN C, WANG X, et al.Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing[J]. Materials Science and Engineering A, 2017, 701: 344-351.
[7] AMATO K N, GAYTAN S M, MURR L E, et al.Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting[J]. Acta Materialia, 2012, 60(5): 2229-2239.
[8] CLOOTS M, UGGOWITZER P J, WEGENER K.Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles[J]. Materials & Design, 2016, 89: 770-784.
[9] QIU C, CHEN H, LIU Q, et al.On the solidification behaviour and cracking origin of a nickel-based superalloy during selective laser melting[J]. Materials Characterization, 2019, 148: 330-344.
[10] DIVYA V D, MUÑOZ-MORENO R, MESSÉ O M D M, et al. Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment[J]. Materials Characterization, 2016, 114: 62-74.
[11] WANG X, CARTER L N, PANG B, et al.Microstructure and yield strength of SLM-fabricated CM247LC Ni-superalloy[J]. Acta Materialia, 2017, 128: 87-95.
[12] PENG K, DUAN R, LIU Z, et al.Cracking behavior of René104 nickel-based superalloy prepared by selective laser melting using different scanning strategies[J]. Materials (Basel), 2020, 13(9): 1-13.
[13] WEI B, LIU ZM, NONG BZ, et al.Microstructure, cracking behavior and mechanical properties of René 104 superalloy fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2021, 867: 158377.
[14] 段然曦, 黄伯云, 刘祖铭, 等. René104镍基高温合金选区激光熔化成形及开裂行为[J]. 中国有色金属学报, 2018, 28(8): 1568-1578.
DUAN Ranxi, HUANG Baiyun, LIU Zuming, et al.Selective laser melting fabrication and cracking behavior of René104 nickel-based superalloy[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(8): 1568-1578.
[15] YANG J, LI F, WANG Z, et al.Cracking behavior and control of René104 superalloy produced by direct laser fabrication[J]. Journal of Materials Processing Technology, 2015, 225: 229-239.
[16] HENDERSON M B, ARRELL D, LARSSON R, et al.Nickel based superalloy welding practices for industrial gas turbine applications[J]. Science and Technology of Welding and Joining, 2004, 9(1): 13-21.
[17] 杨倩. IN738合金粉末特性及其选区激光熔化成形性能研究[D]. 兰州: 兰州理工大学, 2019.
YANG Qian.Study on the powder characteristics and forming properties in selective laser melting of IN738 alloy[D]. Lanzhou: Lanzhou University of Technology, 2019.
[18] 苏鹏飞, 刘祖铭, 郭旸, 等. 氩气雾化René104镍基高温合金粉末的显微组织和凝固缺陷[J]. 中南大学学报(自然科学版), 2018, 49(1): 64-71.
SU Pengfei, LIU Zuming, GUO Yang, et al.Microstructure and solidification defects of René104 nickel-based superalloy powder atomized by argon[J]. Journal of Central South University (Science and Technology), 2018, 49(1): 64-71.
[19] MOURER D P B, BACKMAN, DANIEL GUSTOV MELROSE. Ni bassed superalloy and its use gas turbine disks, shafts,impellers: US 1666618A1[P].2006-01-27.
[20] DÉPINOY S, SENNOUR M, FERHAT L, et al. Experimental determination of solute redistribution behavior during solidification of additively manufactured 316L[J]. Scripta Materialia, 2021, 194: 113663.
[21] 王黎, 魏青松, 贺文婷, 等. 粉末特性与工艺参数对SLM成形的影响[J]. 华中科技大学学报(自然科学版), 2012, 40(6): 20-23.
WANG Li, WEI Qingsong, HE Wenting, et al.Influence of powder characteristics and process parameters on SLM formability[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(6): 20-23.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn