[1] COOLIDGE W.Ductile tungsten[J]. Transactions of the American Institute of Electrical Engineers, 1910, 29(2): 961-965.
[2] 孙向阳. 碳化钛颗粒增强锰白铜基复合材料的制备与性能研究[D]. 西安: 长安大学, 2008.
SUN Xiangyang.Study on the preparation and properties of TiC particulates reinforced Cu-Ni-Mn matrix composites[D]. Xi’an: Chang’an University, 2008.
[3] PARK J, OH S, JUNG C, et al.Al2O3-dispersed Cu prepared by the combustion synthesized powder[J]. Journal of Materials Science Letters, 1999, 18(1): 67-70.
[4] SRIVATSAN T S, TROXELL J D.Effect of niobium filaments on mechanical response and fracture characteristics of dispersion strengthened copper alloy and copper-niobium microcomposite[J]. Materials Science and Engineering A, 1999, 264(1): 60-73.
[5] 张阳琳, 罗自贵, 胡晓明, 等. Al2O3含量对放电等离子烧结Al2O3/Cu复合材料组织与性能的影响[J]. 粉末冶金材料科学与工程, 2021, 26(1): 9-14.
ZHANG Yanglin, LUO Zigui, HU Xiaoming, et al.Effects of Al2O3 content on microstructure and properties of Al2O3/Cu composite materials prepared by spark plasma sintering[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(1): 9-14.
[6] AGHAMIRI S M S, UKAI S, OONO N, et al. Recrystallization of cold rolled oxide dispersion strengthened copper during room temperature annealing[J]. Journal of Alloys and Compounds, 2019, 798: 187-193.
[7] DING J, ZHAO N, SHI C, et al.In situ formation of Cu-ZrO2 composites by chemical routes[J]. Journal of Alloys and Compounds, 2006, 425(1/2): 390-394.
[8] 李政舟, 刘如铁, 林雪杨, 等. SiO2/ZrO2复合陶瓷组元对铜基摩擦材料摩擦磨损性能的影响[J]. 粉末冶金材料科学与工程, 2021, 26(2): 108-116.
LI Zhengzhou, LIU Rutie, LIN Xueyang, et al.Effects of SiO2/ZrO2 composite ceramic components on friction and wear properties of copper-based friction materials[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(2): 108-116.
[9] WANG X, LI J, ZHANG Y, et al.Improvement of interfacial bonding and mechanical properties of Cu-Al2O3 composite by Cr-nanoparticle-induced interfacial modification[J]. Journal of Alloys and Compounds, 2017, 695: 2124-2130.
[10] SHEN K, WANG M P, LI S M.Study on the properties and microstructure of dispersion strengthened copper alloy deformed at high temperatures[J]. Journal of Alloys and Compounds, 2009, 479(1/2): 401-408.
[11] 柳秉毅, 陆文龙, 沈智荣, 等. 粉末冶金制备Al2O3颗粒增强铜基复合材料的耐蚀性[J]. 特种铸造及有色合金, 2016, 36(2): 204-207.
LIU Bingyi, LU Wenlong, SHEN Zhirong, et al.Corrosion resistance of Al2O3/Cu composites prepared by powder metallurgy[J]. Special Casting & Nonferrous Alloys, 2016, 36(2): 204-207.
[12] 黄胤杰, 骆登高, 李周, 等. 不同处理状态下弥散强化铜合金的力学行为[J]. 中国有色金属学报, 2019, 29(1): 35-43.
HUANG Yinjie, LUO Denggao, LI Zhou, et al.Mechanical behavior of dispersion strengthened copper alloy under different treatment states[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(1): 35-43.
[13] 李周, 肖柱, 姜雁斌, 等. 高强导电铜合金的成分设计、相变与制备[J]. 中国有色金属学报, 2019, 29(9): 2009-2049.
LI Zhou, XIAO Zhu, JIANG Yanbin, et al.Composition design, phase transformation and preparation of high strength conductive copper alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2009-2049.
[14] 李玉娟, 任凤章, 王晓伟, 等. 不同Al含量Cu-Al合金内氧化后的组织对比[J]. 材料热处理学报, 2014, 35(9): 29-32.
LI Yujuan, REN Fengzhang, WANG Xiaowei, et al.Comparative analysis of internal oxidation microstructure of Cu-Al alloy with different Al content[J]. Transactions of Materials and Heat Treatment, 2014, 35(9): 29-32.
[15] REN F, ZHI A, ZHANG D, et al.Preparation of Cu-Al2O3 bulk nano-composites by combining Cu-Al alloy sheets internal oxidation with hot extrusion[J]. Journal of Alloys and Compounds, 2015, 633: 323-328.
[16] ALBERTO L A, IGNACIO R R, RUBEN V R, et al.Synthesis of copper-alumina composites by mechanical milling: An analysis[J]. Materials and Manufacturing Processes, 2013, 2(28): 157-162.
[17] ZAWRAH M F, ZAYED H A, ESSAWY R A, et al.Preparation by mechanical alloying, characterization and sintering of Cu-20wt.%Al2O3 nanocomposites[J]. Materials & Design, 2013, 46: 485-490.
[18] LU Z L, WANG Z C, LUO L M, et al.Electroless plating of copper on Al2O3 and its heat treatment behaviour[J]. Surface Engineering: Electrodeposition, 2015, 31(3): 240-244.
[19] KORAĆ M, KAMBEROVIĆ Z, ANĐIĆ Z, et al. Advances in thermochemical synthesis and characterization of the prepared copper/alumina nanocomposites[J]. Metals, 2020, 10(6): 719-725.
[20] WANG X, WANG Y, SU Y, et al.Synergetic strengthening effects on copper matrix induced by Al2O3 particle revealed from micro-scale mechanical deformation and microstructure evolutions[J]. Ceramics International, 2019, 45(12): 14889-14895.
[21] 张雪辉, 李晓闲, 刘位江, 等. 冷加工变形量对Al2O3弥散强化铜合金组织与性能的影响[J]. 中国有色金属学报, 2018, 28(4): 705-711.
ZHANG Xuehui, LI Xiaoxian, LIU Weijiang, et al.Effect of cold deformation on microstructures and properties of Al2O3- dispersion strengthened copper[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(4): 705-711.
[22] GUO M X, WANG M P, CAO L F, et al.Work softening characterization of alumina dispersion strengthened copper alloys[J]. Materials Characterization, 2007, 58(10): 928-935.
[23] LI C, ZENG W, XIE Y, et al.Annealing hardening and softening of an ultrafine grained Cu-4.5vol.%Al2O3 nanocomposite[J]. Materials Science and Engineering A, 2020, 778: 139126.
[24] 程建奕, 汪明朴, 李周, 等. 纳米Al2O3粒子弥散强化铜合金冷加工及退火行为[J]. 稀有金属材料与工程, 2004, 33(11): 1178-1181.
CHENG Jianyi, WANG Mingpu, LI Zhou, et al.Cold drawing and annealing behavior of nano-sized Al2O3 dispersion strengthened copper[J]. Rare Metal Materials and Engineering, 2004, 33(11): 1178-1181.
[25] AGHAMIRI S M S, OONO N, UKAI S, et al. Brass-texture induced grain structure evolution in room temperature rolled ODS copper[J]. Materials Science and Engineering A, 2019, 749: 118-128.
[26] KIM S, LEE D N.Recrystallization of alumina dispersion strengthened copper strips[J]. Materials Science and Engineering A, 2001, 313(1): 24-33.
[27] UKAI S.Oxide dispersion strengthened steels[J]. Comprehensive Nuclear Materials, 2012, 4: 241-271.
[28] CHEN F, YAN Z, WU X, et al.Microstructures and properties of Cu-10Sn oil bearings reinforced by Al2O3 nanoparticles[J]. Advanced Powder Technology, 2021, 32(3): 710-717.
[29] MA B, HISHINUMA Y, NOTO H, et al.Development of Y2O3 dispersion strengthened Cu alloy using Cu6Y and Cu2O addition through the MA-HIP process[J]. Fusion Engineering and Design, 2020, 161: 112045.
[30] MA B, HISHINUMA Y, NOTO H, et al.Influence of Cu-Y compound content on the microstructure of Cu-Y2O3 dispersion strengthened alloys synthesized by MA and HIP process[J]. Plasma and Fusion Research, 2021, 16: 2405053.
[31] AVETTAND-FÈNOËL M N, SIMAR A, SHABADI R, et al. Characterization of oxide dispersion strengthened copper based materials developed by friction stir processing[J]. Materials & Design, 2014, 60: 343-357.
[32] JOSHI P B, REHANI B, NAIK P, et al.Studies on copper-yttria nanocomposites: High-energy ball milling versus chemical reduction method[J]. Journal of Nanoscience and Nanotechnology, 2012, 12(3): 2591-2597.
[33] ZHUO H, TANG J, YE N.A novel approach for strengthening Cu-Y2O3 composites by in situ reaction at liquidus temperature[J]. Materials Science and Engineering A, 2013, 584: 1-6.
[34] HUANG B, HISHINUMA Y, NOTO H, et al.In-situ fabrication of yttria dispersed copper alloys through MA-HIP process[J]. Nuclear Materials and Energy, 2018, 16: 168-174.
[35] 卓海鸥, 唐建成, 叶楠. 液相原位反应法制备Cu-Y2O3复合材料[J]. 金属学报, 2012, 48(12): 1474-1478.
ZHUO Haiou, TANG Jiancheng, YE Nan.Cu-Y2O3 composites prepared by liquid phase in situ reaction[J]. Acta Metallurgica Sinica, 2012, 48(12): 1474-1478.
[36] AGHAMIRI S M S, OONO N, UKAI S, et al. Microstructure development and high tensile properties of He/H2 milled oxide dispersion strengthened copper[J]. Journal of Alloys and Compounds, 2019, 783: 674-679.
[37] AGHAMIRI S M S, ZHANG S H, UKAI S, et al. Microstructure development in cryogenically rolled oxide dispersion strengthened copper[J]. Materialia, 2020, 9: 100520.
[38] AGHAMIRI S M S, OONO N, UKAI S, et al. Microstructure and mechanical properties of mechanically alloyed ODS copper alloy for fusion material application[J]. Nuclear Materials and Energy, 2018, 15: 17-22.
[39] CARRO G, MUÑOZ A, MONGE M A, et al. Fabrication and characterization of Y2O3 dispersion strengthened copper alloys[J]. Journal of Nuclear Materials, 2014, 455(1/3): 655-659.
[40] 谢鲲, 张惠, 张守清. 稀土氧化物弥散强化铜基复合材料的制备技术[J]. 热加工工艺, 2016, 45(10): 25-29.
XIE Kun, ZHANG Hui, ZHANG Shouqing.Manufacture technology of rare earth oxides dispersion strengthened Cu- based composite[J]. Hot Working Technology, 2016, 45(10): 25-29.
[41] TAHA M A, NASSAR A H, ZAWRAH M F.Effect of milling parameters on sinterability, mechanical and electrical properties of Cu-4wt.%ZrO2 nanocomposite[J]. Materials Chemistry and Physics, 2016, 181: 26-32.
[42] MOHAMMED A T, ZAWRAH M F.Effect of nano ZrO2 on strengthening and electrical properties of Cu-matrix nanocomposits prepared by mechanical alloying[J]. Ceramics International, 2017, 43(15): 12698-12704.
[43] FATHY A, ELKADY O, ABU-OQAIL A.Microstructure, mechanical and wear properties of Cu-ZrO2 nanocomposites[J]. Materials Science and Technology, 2017, 33(17): 2138-2146.
[44] FATHY A, ELKADY O, ABU-OQAIL A.Synthesis and characterization of Cu-ZrO2 nanocomposite produced by thermochemical process[J]. Journal of Alloys and Compounds, 2017, 719(30): 411-419.
[45] FATHY A, WAGIH A, ABU-OQAIL A.Effect of ZrO2 content on properties of Cu-ZrO2 nanocomposites synthesized by optimized high energy ball milling[J]. Ceramics International, 2019, 45(2): 2319-2329.
[46] 梁淑华, 范志康, 徐磊, 等. 原位生成Al2O3/Cu复合材料的新工艺[J]. 复合材料学报, 2003, 20(3): 93-97.
LIANG Shuhua, FAN Zhikang, XU Lei, et al.New processing for preparing Al2O3/Cu composite by in situ reaction[J]. Acta Materiae Compositae Sinica, 2003, 20(3): 93-97.
[47] 虞涛. 机械合金化制备Al2O3颗粒增强铜基复合材料的研究[D]. 南京: 东南大学, 2017.
YU Tao.Study on the preparation of Cu-based composites reinforced with alumina particles by mechanical alloying[D]. Nanjing: Southeast University, 2017.