[1] MARTIENSSEN W, WARLIMONT H.Springer Handbook of Condensed Matter and Materials Data[M]. NewYork, USA: Springer Science & Business Media, 2005.
[2] GUZMAN I Y.Certain principles of formation of porous ceramic structures. properties and applications (a review)[J]. Glass and Ceramics, 2003, 60(9): 280-283.
[3] AHMAD R, HA J H, SONG I H.Processing methods for the preparation of porous ceramics[J]. Journal of Korean Powder Metallurgy Institute, 2014, 21(5): 389-398.
[4] OH S T, TAJIMA K I, ANDO M, et al.Strengthening of porous alumina by pulse electric current sintering and nanocomposite processing[J]. Journal of the American Ceramic Society, 2000, 83(5): 1314-1316.
[5] MURAYAMA N.What we can do by pulse electric current sintering[J]. Ceramics Japan, 1997, 32(6): 445-449.
[6] KINGERY W D, BOWEN H K, UHLMANN D R.Introduction to Ceramics[M]. 2nd edition. New York, USA: John Wiley and Sons, 1976.
[7] YANG Y, WANG Y, TIAN W, et al.In situ porous alumina/aluminum titanate ceramic composite prepared by spark plasma sintering from nanostructured powders[J]. Scripta Materialia, 2009, 60(7): 578-581.
[8] JAIN H, KUMAR R, GUPTA G, et al.Microstructure, mechanical and EMI shielding performance in open cell austenitic stainless steel foam made through PU foam template[J]. Materials Chemistry and Physics, 2020, 242: 122273.
[9] LUYTEN J, THIJS I, VANDERMEULEN W, et al.Strong ceramic foams from polyurethane templates[J]. Advances in Applied Ceramics, 2005, 104(1): 4-8.
[10] RICHARDSON J T, PENG Y, REMUE D.Properties of ceramic foam catalyst supports: Pressure drop[J]. Applied Catalysis A General, 2000, 204(1): 19-32.
[11] TANG X Y, ZHANG E J, ZHANG X Y, et al.Design and for mulation of polyurethane foam used for porous alumina deramics[J]. Journal of Polymer Research, 2018, 25(6): 1-10.
[12] SHERMAN A J, TUFFIAS R H, KAPLAN R B.Refractory ceramic foams: A novel, new high-temperature structure[J]. American Ceramic Society Bulletin, 1991, 70(6): 1025-1029.
[13] CAO J, RAMBO C R, SIEBER H.Preparation of porous Al2O3-ceramics by biotemplating of wood[J]. Journal of Porous Materials, 2004, 11(3): 163-172.
[14] WHITE R A, WEBER J N, WHITE E W.Replamineform: A new process for preparing porous ceramic, metal, and polymer prosthetic materials[J]. Science, 1972, 176(4037): 922-924.
[15] STUDART A R, GONZENBACH U T, TERVOORT E, et al.Processing routes to macroporous ceramics: A review[J]. Journal of the American Ceramic Society, 2006, 89(6): 1771-1789.
[16] LEE C Y, LEE S, HA J H, et al.Effect of the processing conditions of reticulated porous alumina on the compressive strength[J]. Journal of the Korean Ceramic Society, 2021, 58(4): 495-506.
[17] BROWN D D, GREEN D J.Investigation of strut crack formation in open cell alumina ceramics[J]. Journal of the American Ceramic Society, 1994, 77(6): 1467-1472.
[18] LYCKFELDT O, FERREIRA J.Processing of porous ceramics by ‘starch consolidation’[J]. Journal of the European Ceramic Society, 1998, 18(2): 131-140.
[19] KIM J, HA J H, LEE J, et al.Effect of pore structure on gas permeability constants of porous alumina[J]. Ceramics International, 2019, 45(5): 5231-5239.
[20] SEGADA A M.Microstructure, permeability and mechanical behaviour of ceramic foams[J]. Materials Science and Engineering A, 1996, 209(1/2): 149-155.
[21] PARKHOMCHUK E V, FEDOTOV K V, SEMEYKINA V S, et al.Polystyrene microsphere-template method for textural design of alumina-an effective catalyst support for macromolecule conversion[J]. Catalysis Today, 2020, 353(SI): 180-186.
[22] LUYTEN J, MULLENS S, COOYMANS J, et al.New processing techniques of ceramic foams[J]. Advanced Engineering Materials, 2003, 5(10): 715-718.
[23] THIJS I, LUYTEN J, MULLENS S.Producing ceramic foams with hollow spheres[J]. Journal of the American Ceramic Society, 2004, 87(1): 170-172.
[24] ZHANG G J, YANG J F, OHJI T.Fabrication of porous ceramics with unidirectionally aligned continuous pores[J]. Journal of the American Ceramic Society, 2001, 84(6): 1395-1397.
[25] KATSUKI H, KAWAHARA A, ICHINOSE H.Preparation and some properties of porous alumina ceramics obtained by the gelatination of ammonium alginate[J]. Journal of Materials Science, 1992, 27(22): 6067-6070.
[26] CHEN Z W, XU G G, CUI H Z, et al.Preparation of porous Al2O3 ceramics by starch consolidation casting method[J]. International Journal of Applied Ceramic Technology, 2018, 15(6): 1550-1558.
[27] BOWDEN M, RIPPEY M. Porous ceramics formed using starch consolidation[J]. Key Engineering Materials, 2002, 206/213(3): 1957-1960
[28] LI Y J, YANG X F, LIU D H, et al.Permeability of the porous Al2O3 ceramic with bimodal pore size distribution[J]. Ceramics International, 2019, 45(5): 5952-5957.
[29] GENG S L, SHEN P, HU Z J, et al.Formation mechanism and control of a large-scale lamellar structure in freeze-cast Al2O3 ceramics under dual temperature gradients[J]. Journal of the European Ceramic Society, 2018, 38(6): 2605-2611.
[30] FUKASAWA T, ANDO M, OHJI T, et al.Synthesis of porous ceramics with complex pore structure by freeze-dry processing[J]. Journal of the American Ceramic Society, 2001, 84(1): 230-232.
[31] FUKASAWA T, DENG Z Y, ANDO M, et al.Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process[J]. Journal of Materials Science, 2001, 36(10): 2523-2527.
[32] AKARTUNA I, STUDARTA R, TERVOORT E, et al.Macroporous ceramics from particle-stabilized emulsions[J].Advanced Materials, 2008, 20(24): 4714-4718.
[33] BEPPU Y, ANDO M, OHJI T.Control of porosity and pore size for porous alumina prepared from alpha-alumina, BaSO4 and/or SrSO4[J]. International Journal of Materials & Product Technology, 2001, 1: 209-214.
[34] KIM H, DA ROSA C, BOARO M, et al.Fabrication of highly porous yttria-stabilized zirconia by acid leaching nickel from a nickel-yttria-stabilized zirconia cermet[J]. Journal of the American Ceramic Society, 2002, 85(6): 1473-1476.
[35] POKHREL A, SEO D N, LEE S T, et al.Processing of porous ceramics by direct foaming: A review[J]. Journal of the Korean Ceramic Society, 2013, 50(2): 93-102.
[36] ZHAO J, YANG C, SHIMAI S, et al.The effect of wet foam stability on the microstructure and strength of porous ceramics[J]. Ceramics International, 2018, 44(1): 269-274.
[37] DU Z P, YAO D X, XIA Y E, et al.Highly porous silica foams prepared via direct foaming with mixed surfactants and their sound absorption characteristics[J]. Ceramics International, 2020, 46(9): 12942-12747.
[38] RAO P R, MURALIDHARAN K, MOMAYEZ M, et al.Direct foaming driven synthesis and thermophysical characterization of silica-alumina foams: Applications for thermal insulation[J]. Ceramics International, 2020, 46(8): 10431-10441.
[39] SCHEITHAUER U, KERBER F, FüSSEL A, et al. Alternative process routes to manufacture porous ceramics—opportunities and challenges[J]. Materials, 2019, 12(4): 663.
[40] COLOMBO P, HELLMANN J R.Ceramic foams from preceramic polymers[J]. Materials Research Innovations, 2002, 6(5): 260-272.
[41] SEPULVEDA P.Gelcasting foams for porous ceramics[J]. American Ceramic Society Bulletin, 1997, 76(10): 61-65.
[42] ROMÁN-MANSO B, MUTH J, GIBSON L J, et al. Hierarchically porous ceramics via direct writing of binary colloidal gel foams[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8976-8984.
[43] CELANI A, BLACKBURN S, SIMMONS M J, et al.Formulation of ceramic foams: A new class of amphiphiles[J]. Colloids and Surfaces A, 2018, 536(SI): 104-112.
[44] REN B, LIU J J, WANG Y L, et al.Hierarchical cellular scaffolds fabricated via direct foam writing using gelled colloidal particle-stabilized foams as the ink[J]. Journal of the American Ceramic Society, 2019, 102(11): 6498-6506.
[45] REN J T, YING W, ZHAO J, et al.High-strength porous mullite ceramics fabricated from particle-stabilized foams via oppositely charged dispersants and surfactants[J]. Ceramics International, 2019, 45(5): 6385-6391.
[46] HAN Y, YANG J W, JUNG M, et al.Controlling the pore size and connectivity of alumina-particle-stabilized foams using sodium dodecyl sulfate: Role of surfactant concentration[J]. Langmuir, 2020, 36(35): 10331-10340.
[47] LIU J J, REN B, RONG Y D, et al.Highly porous alumina cellular ceramics bonded by in-situ formed mullite prepared by gelation-assisted Al2O3-Si particle-stabilized foams[J]. Ceramics International, 2020, 46(8): 12282-12287.
[48] AHMAD R, HA J H, SONG I H.Particle-stabilized ultra-low density zirconia toughened alumina foams[J]. Journal of the European Ceramic Society, 2013, 33(13/14): 2559-2564.
[49] GERMAN R M.Sintering Theory and Practice[M]. New York, USA: John Wiley and Sons, 1996.
[50] RAHAMAN M N.Ceramic Processing and Sintering[M]. Boca Raton, USA: CRC Press, 2003.
[51] 谢志鹏. 结构陶瓷[M]. 北京: 清华大学出版社, 2011.
XIE Zhipeng.Structural Ceramics[M], Beijing: Tsinghua University Press, 2011.
[52] GERMAN R M, PAVAN S, SEONG J P.Liquid phase sintering[J]. Journal of Materials Science 2009, 44(1): 1-39.
[53] ĆURKOVIĆ L, VESELI R, GABELICA I, et al.A review of microwave-assisted sintering technique[J]. Transactions of FAMENA, 2021, 45(1): 1-16.
[54] SINGH V K.Densification of alumina and silica in the presence of a liquid phase[J]. Journal of the American Ceramic Society, 1981, 64(10): 133-136.
[55] WANG H P, CHEN J M, YANG W Y, et al.Effects of Al2O3 addition on the sintering behavior and microwave dielectric properties of CaSiO3 ceramics[J]. Journal of the European Ceramic Society, 2012, 32(3): 541-545.
[56] LU X C, LI G S, KIM J Y, et al.Enhanced sintering of β″- Al2O3/YSZwith the sintering aids of TiO2 and MnO2[J]. Journal of Power Sources, 2015, 295:167-174.
[57] YANG Y, MA M S, ZHANG F Q, et al.Low-temperature sintering of Al2O3 ceramics doped with 4CuO-TiO2-2Nb2O5 composite oxide sintering aid[J]. Journal of the European Ceramic Society, 2020, 40(15): 5504-5510.
[58] WATARI K J, HWANG H J, TORIYAMA M, et al.Effective sintering aids for low-temperature sintering of AlN ceramics[J]. Journal of Materials Research, 1999,14(4): 1409-1417.
[59] ZHOU Y, HIRAO K, TORIYAMA M, et al.Effects of intergranular phase chemistry on the microstructure and mechanical properties of silicon carbide ceramics densified with rare-earth oxide and alumina additions[J]. Journal of the American Ceramic Society, 2001, 84(7): 1642-1644.
[60] KUMAR R, CHAUBEY A K, MAITY T, et al.Mechanical and tribological properties of Al2O3-TiC composite fabricated by spark plasma sintering process with metallic (Ni,Nb) binders[J]. Metals, 2018, 8(1): 50-58.
[61] TELLE R.Analysis of pressureless sintering of titanium diboride ceramics with nickel, cobalt, and tungsten carbide additives[J]. Journal of the European Ceramic Society, 2019, 39(7): 2266-2276.
[62] COBLE R L.Initial sintering of alumina and hematite[J]. Journal of the American Ceramic Society, 1958, 41(2): 55-62.
[63] BASU B, BALANI K.Advanced Structural Ceramics[M]. New Jersey, USA: John Wiley and Sons, 2011.
[64] HAN Y, LI S, ZHU T B, et al.An oscillatory pressure sintering of zirconia powder: Rapid densification with limited grain growth[J]. Journal of the American Ceramic Society, 2017, 100(7): 2774-2780.
[65] YUAN Y, FAN J Y, LI J S, et al.Oscillatory pressure sintering of Al2O3 ceramics[J]. Ceramics International, 2020, 46(10): 15670-15673.
[66] LIU D U, ZHANG X C, FAN J Y, et al.Sintering behavior and mechanical properties of alumina ceramics exposed to oscillatory pressure at different sintering stages[J]. Ceramics International, 2021, 47(16): 23682-2365.
[67] LI J S, FAN J Y, YUAN Y, et al.Effect of oscillatory pressure on the sintering behavior of ZrO2 ceramic[J]. Ceramics International, 2020, 46(9): 13240-13243.
[68] ZHU T B, XIE Z P, HAN Y, et al.Microstructure and mechanical properties of ZTA composites fabricated by oscillatory pressure sintering[J]. Ceramics International, 2018, 44(1): 505-510.
[69] GUILLON O, GONZALEZ‐JULIAN J, DARGATZ B, et al. Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments[J]. Advanced Engineering Materials, 2014, 16(7): 830-849.
[70] SHEN Z J, JOHNSSON M, ZHAO Z, et al.Spark plasma sintering of alumina[J]. Journal of the American Ceramic Society, 2002, 85(8): 1921-1927.
[71] MUNIR Z A, ANSELMITAMBURINI U, OHYANAGI M.The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method[J]. Journal of Materials Science, 2006, 41(3): 763-777.
[72] LANGER J, HOFFMANN M J, GUILLON O.Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina[J]. Acta Materialia, 2009, 57(18): 5454-5465.
[73] LIU Y, MIN F F, ZHU J B, et al.Effect of nanometer Al2O3 powder on microstructure and properties of alumina ceramics by microwave sintering[J]. Materials Science and Engineering A, 2012, 546: 328-331.
[74] YAN S Y, YIN Z B, YUAN J T, et al.Microstructure and properties of submicron grained alumina ceramic tool material prepared by two-step microwave sintering[J]. Ceramics International, 2018, 44(14): 17479-17485.
[75] HONG D B, YUAN J T, YIN Z B, et al.Ultrasonic-assisted preparation of complex-shaped ceramic cutting tools by microwave sintering[J]. Ceramics International, 2020, 46(12): 20183-20190.
[76] COLOGNA M, RASHKOVA B, RAJ R.Flash sintering of nanograin zirconia in <5 s at 850 ℃[J]. Journal of the American Ceramic Society, 2010, 93(11): 3556-3559.
[77] COLOGNA M, RAJ R.Surface diffusion-controlled neck growth kinetics in early stage sintering of zirconia, with and without applied DC electrical field[J]. Journal of the American Ceramic Society, 2011, 94(2): 391-395.
[78] 谢志鹏, 许靖堃, 安迪. 先进陶瓷材料烧结新技术研究进展[J]. 中国材料进展, 2019, 38(9): 821-830, 886.
XIE Zhipeng, XU Jingkun, AN Di.Research progress of novel sintering technology for advanced ceramic materials[J]. Materials China, 2019, 38(9): 821-830, 886.
[79] BIESUZ M, SGLAVO V M.Flash sintering of alumina: Effect of different operating conditions on densification[J]. Journal of the European Ceramic Society, 2016, 36(10): 2535-2542.
[80] YOON B, YADAV D, GHOSE S, et al.Reactive flash sintering: MgO and α-Al2O3 transform and sinter into single-phase polycrystals of MgAl2O4[J]. Journal of the American Ceramic Society, 2019, 102(5): 2294-2303.
[81] OJAIMI C L, FERREIRA J A, CHINELATTO A L, et al.Microstructural analysis of ZrO2/Al2O3 composite: Flash and conventional sintering[J]. Ceramics International, 2020, 46(2): 2473-2480.