Preparation and microwave absorption properties of lightweight FCI/SCI/PU composite foam
WEI Mengting1, LI Zhuan1, LUO Heng2, LI Jing1,3
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. School of Electronic Information, Central South University, Changsha 410004, China; 3. Foshan Eahison Communication Co., Ltd, Foshan 528100, China
Abstract:Foaming is an effective method for achieving lightweight electromagnetic wave absorption materials, and electromagnetic waves undergo multiple scattering within the foam pores, which helps improve absorption efficiency. This study leveraged the synergistic effect of multi-shaped magnetic powders and pore structures, employing mechanical blending and a one-step foaming method to composite-add flake carbonyl iron (FCI) and spherical carbonyl iron (SCI) into a polyurethane (PU) matrix, to prepare lightweight porous polyurethane composite foam (FCI/SCI/PU). The influence and mechanism of different FCI and SCI mass ratios on the X-band absorptive performance of FCI/SCI/PU foam were investigated. The results indicate that when the mass ratio of FCI to SCI is 2∶1, the FCI/SCI/PU foam exhibits optimal absorption properties, reaching an absorption peak at 12.4 GHz with a value of -29.17 dB, an effective absorption bandwidth of 2.12 GHz, and a foam density of 0.30 g/cm3. The improvement in electromagnetic wave absorption properties stems from multiple loss mechanisms such as eddy current loss, natural resonance, and interface polarization, as well as the foam's excellent impedance matching performance and multiple scattering effects due to its pore structure.
[1] 郭宇, 贾晓敏, 张塬昆, 等. 雷达吸波聚合物基体材料研究概况[J]. 工程塑料应用, 2016, 44(8): 133-137. GUO Yu, JIA Xiaomin, ZHANG Yuankun, et al.Research situation of radar wave-absorbing polymer matrix material[J]. Engineering Plastics Application, 2016, 44(8): 133-137. [2] ZHANG X C, ZHAO Z B, XU J, et al.N-doped carbon nanotube arrays on reduced graphene oxide as multifunctional materials for energy devices and absorption of electromagnetic wave[J]. Carbon, 2021, 177: 216-225. [3] 郭霄, 杨青真, 文振华, 等. 吸波材料脱落对球面收敛喷管电磁散射特性的影响[J]. 航空学报, 2021, 42(6): 224466. GUO Xiao, YANG Qingzhen, WEN Zhenhua, et al.Influence of RAM abscission on electromagnetic scattering characteristic of cavity[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 224466. [4] CAI Z X, SU L, WANG H J, et al.Hydrophobic SiC@C nanowire foam with broad-band and mechanically controlled electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8555-8562. [5] XIE S, JI Z J, ZHU L C, et al.Recent progress in electromagnetic wave absorption building materials[J]. Journal of Building Engineering, 2020, 27: 100963. [6] LI N, SHI J F, ZOU K K, et al.Mechanically reinforced rigid polyimide foam via chemically grafting isocyanate acid for ultrabroad band microwave absorption[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25990-25999. [7] XU X L, TIAN X K, BO G X, et al.Synthesis of lightweight renewable microwave-absorbing bio-polyurethane/Fe3O4 composite foam: structure analysis and absorption mechanism[J]. International Journal of Molecular Sciences, 2022, 23(20): 12301. [8] LIU C, DUAN Y B, CAI J, et al.Compressible Fe3O4/ MWCNTs-coated polymer foams for high-performance and tunable electromagnetic microwave absorption[J]. Materials Research Express, 2019, 6(10): 106114. [9] 周必成, 王东红, 贾琨, 等. 羰基铁吸波材料性能提升研究进展[J]. 科学技术与工程, 2021, 21(8): 2989-2996. ZHOU Bicheng, WANG Donghong, JIA Kun, et al.Research of progress in the improvement the properties of carbonyl iron wave-absorbing materials[J]. Science and Technology and Engineering, 2021, 21(8): 2989-2996. [10] 覃仁驰, 孟凡彬. 羰基铁粉作为微波吸收材料的研究进展[J]. 包装工程, 2023, 44(9): 129-136. QIN Renchi, MENG Fanbin.Research progress of carbonyl iron powder as microwave absorbing material[J]. Packaging Engineering, 2023, 44(9): 129-136. [11] 张雪婷. 羰基铁粉基宽频吸波结构设计及增材制造工艺研究[D]. 太原: 太原科技大学, 2022. ZHANG Xueting.Design of carbonyl iron powder based broadband absorbing structure and study on addtive manufacturing technology[D]. Taiyuan: Taiyuan University of Science and Technology, 2022. [12] 刘渊, 郭煜生, 刘祥萱, 等. 聚氨酯-羰基铁泡沫复合材料的制备及吸波性能[J]. 化学推进剂与高分子材料, 2016, 14(4): 64-68. LIU Yuan, GUO Yusheng, LIU Xiangxuan, et al.Preparation and wave absorption performance of polyurethane-carbonyl iron foam composites[J]. Chemical Propellants & Polymeric Materials, 2016, 14(4): 64-68. [13] HUANG X G, YU D P, WANG S M.Microwave absorption properties of multi-walled carbon nanotubes/carbonyl iron particles/polyurethane foams[J]. Materials, 2022, 15(16): 5690. [14] WANG S M, HUANG X G, ZHANG W L.Preparation of graphene/flaky carbonyl iron/polyurethane foam composites and research on their microwave absorption properties[J]. Applied Physics A-Materials Science & Processing, 2021, 127(10): 742. [15] 王轩, 朱冬梅, 向耿, 等. 羰基铁吸收剂的研究进展[J]. 材料导报, 2014, 28(23): 17-21. WANG Xuan, ZHU Dongmei, XIANG Geng, et al.Research progress on carbonyl iron absorber[J]. Materials Review, 2014, 28(23): 17-21. [16] 潘云星. 基于羰基铁和石墨烯宽频吸波涂层制备及耐温抗氧化性能研究[D]. 大连: 大连理工大学, 2021. PAN Yunxing.Study on preparation and temperature and oxidation resistance properties of broadband microwave absorbing coatings based on carbonyl iron and graphene[D]. Dalian: Dalian University of Technology, 2021. [17] 刘娜, 罗平, 刘朝辉, 等. 雷达波吸收剂羰基铁粉的改性研究进展[J]. 当代化工, 2019, 48(11): 2671-2677. LIU Na, LUO Ping, LIU Zhaohui, et al.Research progress of modified carbonyl iron particles as radar wave absorber[J]. Contemporary Chemical Industry, 2019, 48(11): 2671-2677. [18] 杨芾藜, 侯兴哲, 郑可, 等. 羰基铁粉形貌对吸波性能的影响[J]. 重庆大学学报, 2017, 40(10): 53-59. YANG Fuli, HOU Xingzhe, ZHENG Ke, et al.Effect of carbonyl iron powder morphology on the absorption properties of microwave[J]. Journal of Chongqing University, 2017, 40(10): 53-59. [19] ZHANG F, CUI W, WANG B B, et al.Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities[J]. Composites Part B: Engineering, 2021, 204: 108491. [20] ZHENG D L, LIU T, ZHOU L, et al.Electromagnetic absorbing property of the flaky carbonyl iron particles by chemical corrosion process[J]. Journal of Magnetism and Magnetic Materials, 2016, 419: 119-124. [21] ZHOU J, SUI Y L, WU N, et al.Recent advances in MXene-based aerogels for electromagnetic wave absorption[J]. Small, 2024, 20(49): 2405968. [22] BAO S S, TANG W, SONG Z J, et al.Synthesis of sandwich-like Co15Fe85@C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance[J]. Nanoscale, 2020, 12(36): 18790-18799. [23] DUAN Y L, XIAO Z H, YAN X Y, et al.Enhanced electromagnetic microwave absorption property of peapod-like MnO@carbon nanowires[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 40078-40087. [24] BAO S S, SONG Z J, MAO R J, et al.Synthesis of hollow rod-like hierarchical structures assembled by CoFe/C nanosheets for enhanced microwave absorption[J]. Journal of Materials Chemistry C, 2021, 9(39): 13860-13868.