Study and prospects for the calculation of order-disorder phase transition of Ti-Al alloy based on neutron diffraction technology
LI Xi1, GU Jionglin1, LIU Guoliang1, YUAN Xiaoming2, DU Yong3
1. Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, China; 2. School of Physics, Central South University, Changsha 410012, China; 3. Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
Abstract:Ti-Al alloys have indispensable application value in the aerospace field because they can effectively enhance the performance of aircraft engines. However, during the processing of heating and pressurization, the alloy may undergo multiple ordered-disordered phase transitions, which will significantly affect its mechanical properties. X-ray diffraction is widely used in material analysis, but it is difficult to distinguish ordered and disordered phases with the same lattice structure (such as α2 and α phases). In contrast, neutron diffraction generate diffraction through the interaction between the incident beam and the atomic nuclei of the substance, and have stronger penetrating ability than traditional laboratory X-rays. Moreover, neutron diffraction and X-ray diffraction show differences in the distribution of diffraction peak intensities, which enables neutron diffraction not only to assist in distinguishing the ordered and disordered phases of Ti-Al alloys, but also to further measure the degree of order of the phases. Therefore, the complementary characteristic of neutron diffraction technology and X-ray diffraction technology in diffraction patterns provides a powerful support for in-depth research on the ordered-disordered phase transitions of Ti-Al alloys. This paper systematically elaborates on the methods for calculating the diffraction peak intensities and degree of order of Ti-Al alloys based on neutron diffraction and X-ray diffraction technologies. It also introduces the experimental methods of the two diffraction technologies and their applications in the study of phase transitions of Ti-Al alloys, and looks forward to their application and development prospects in related fields.
李茜, 顾炅琳, 刘国梁, 袁小明, 杜勇. 基于中子衍射技术对钛铝合金有序-无序相变计算的研究与展望[J]. 粉末冶金材料科学与工程, 2025, 30(3): 157-170.
LI Xi, GU Jionglin, LIU Guoliang, YUAN Xiaoming, DU Yong. Study and prospects for the calculation of order-disorder phase transition of Ti-Al alloy based on neutron diffraction technology. Materials Science and Engineering of Powder Metallurgy, 2025, 30(3): 157-170.
[1] APPEL F, PAUL J D H, OEHRING M. Gamma Titanium Aluminide Alloys: Science and Technology[M]. Hoboken, New Jersey, USA: John Wiley & Sons, Inc., 2011. [2] LISS K D, FUNAKOSHI K I, DIPPENAAR R J, et al.Hydrostatic compression behavior and high-pressure stabilized β-phase in γ-based titanium aluminide intermetallics[J]. Metals, 2016, 6(7): 165. [3] BEWLAY B P, NAG S, SUZUKI A, et al.TiAl alloys in commercial aircraft engines[J]. Materials at High Temperatures, 2016, 33(4/5): 549. [4] FLACK R D.Fundamentals of Jet Propulsion with Applications[M]. Cambridge, UK: Cambridge University Press, 2005. [5] BYSTRZANOWSKI S, BARTELS A, CLEMENS H, et al.Creep behaviour and related high temperature microstructural stability of Ti-46Al-9Nb sheet material[J]. Intermetallics, 2005, 13(5): 515-524. [6] 蔡建明, 弭光宝, 高帆, 等. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8): 1-10. CAI Jianming, MI Guangbao, GAO Fan, et al.Research and development of some advanced high temperature titanium alloys for aero-engine[J]. Journal of Materials Engineering, 2016, 44(8): 1-10. [7] LISS K D, BARTELS A, CLEMENS H, et al.Recrystallization and phase transitions in a γ-TiAl-based alloy as observed by ex situ and in situ high-energy X-ray diffraction[J]. Acta Materialia, 2006, 54(14): 3721-3735. [8] XU S, LIN J P, LIANG Y F, et al.Phase stabilities and equilibria of the Ti-Al-Nb ternary system at intermediate temperatures II. the 980 ℃ isothermal section and reactions[J]. Journal of Alloys and Compounds, 2023, 940: 168758. [9] SCHUSTER J C, PALM M.Reassessment of the binary aluminum-titanium phase diagram[J]. Journal of Phase Equilibria and Diffusion, 2006, 27: 255-277. [10] WITUSIEWICZ V T, BONDAR A A, HECHT U, et al.The Al-B-Nb-Ti system: Ⅳ. experimental study and thermodynamic re-evaluation of the binary Al-Nb and ternary Al-Nb-Ti systems[J]. Journal of Alloys and Compounds, 2009, 472(1/2): 133-161. [11] RAGHAVAN V.Al-Ti-V (aluminum-titanium-vanadium)[J]. Journal of Phase Equilibria and Diffusion, 2005, 26(3): 276-279. [12] GRYTSIV A, ROGL P, SCHMIDT H, et al.Constitution of the ternary system Al-Ru-Ti (aluminum-ruthenium-titanium)[J]. Journal of Phase Equilibria, 2003, 24(6): 511-527. [13] SERVANT C, ANSARA I.Thermodynamic modelling of the order-disorder transformation of the orthorhombic phase of the Al-Nb-Ti system[J]. Calphad, 2001, 25(4): 509-525. [14] SERVANT C, ANSARA I.Thermodynamic assessment of the Al‐Nb‐Ti system[J]. Berichte der Bunsengesellschaft Für Physikalische Chemie, 1998, 102(9): 1189-1205. SERVANT C, ANSARA I.Thermodynamic assessment of the Al-Nb-Ti system[J]. Reports of the Bunsengesellschaft for Physical Chemistry, 1998, 102(9): 1189-1205. [15] DISTL B, HAUSCHILDT K, PYCZAK F, et al.Solid-solid phase transformations and their kinetics in Ti-Al-Nb alloys[J]. Metals, 2021, 11(12): 1991. [16] XU S, LIN J, LIANG Y, et al.Phase stabilities and equilibria of the Ti-Al-Nb ternary system at intermediate temperatures III: the 1 010 ℃ isothermal section and Scheil reaction map[J]. Journal of Alloys and Compounds, 2023, 955: 169763. [17] 辛社伟, 赵永庆. 钛合金固态相变的归纳与讨论(Ⅳ): 钛合金热处理的归类[J]. 钛工业进展, 2009, 26(3): 26-29. XIN Shewei, ZHAO Yongqing.Inductions and discussions of solid state phase transformation of titanium alloy(Ⅳ): classifications of heat treatment of titanium alloy[J]. Titanium Industry Progress, 2009, 26(3): 26-29. [18] LI X, DIPPENAAR R J, HAN J K, et al.Phase transformation and structure evolution of a Ti-45Al-7.5Nb alloy processed by high-pressure torsion[J]. Journal of Alloys and Compounds, 2019, 787: 1149-1157. [19] WATSON I J, LISS K D, CLEMENS H, et al.In situ characterization of a Nb and Mo containing γ‐TiAl based alloy using neutron diffraction and high‐temperature microscopy[J]. Advanced Engineering Materials, 2009, 11(11): 932-937. [20] GHOSH G, ASTA M.First-principles calculation of structural energetics of Al-TM (TM=Ti, Zr, Hf) intermetallics[J]. Acta Materialia, 2005, 53(11): 3225-3252. [21] 贺跃辉, 黄伯云, 曲选辉, 等. TiAl基合金双温热处理原理及其相变特征的研究[J]. 中南大学学报(自然科学版), 1996, 27(3): 298-302. HE Yuehui, HUANG Boyun, QU Xuanhui, et al.The investigation on the mechanism of doubletemperature heat treatment processing and its microstructure characteristics for TiAl based alloy material[J]. Journal of Central South University (Science and Technology), 1996, 27(3): 298-302. [22] KIM Y W.Ordered intermetallic alloys, part III: gamma titanium aluminides[J]. The Journal of the Minerals, Metals & Materials Society, 1994, 46(7): 30-39. [23] SCHMOELZER T, LISS K D, ZICKLER G A, et al.Phase fractions, transition and ordering temperatures in TiAl-Nb-Mo alloys: an in- & ex-situ study[J]. Intermetallics, 2010, 18(8): 1544-1552. [24] WEI Z Y, HU K M, SA B S, et al.Pressure-induced structure, electronic, thermodynamic and mechanical properties of Ti2AlNb orthorhombic phase by first-principles calculations[J]. Rare Metals, 2021, 40(10): 1-11. [25] MOZER B, BENDERSKY L A, BOETTINGER W J, et al.Neutron powder diffraction study of the orthorhombic Ti2AlNb phase[J]. Scripta Metallurgica et Materialia, 1990, 24(12): 2363-2368. [26] KONONIKHINA V, STARK A, GAN W M, et al.Ordering and disordering of β/β0-phase in γ-TiAl based alloys investigated by neutron diffraction[J]. MRS Advances, 2017, 2(26): 1399-1404. [27] KABRA S, YAN K, MAYER S, et al.Phase transition and ordering behavior of ternary Ti-Al-Mo alloys using in situ neutron diffraction[J]. International Journal of Materials Research, 2011, 102(6): 697-702. [28] SCHMOELZER T, LISS K D, STARON P, et al.The contribution of high‐energy X‐rays and neutrons to characterization and development of intermetallic titanium aluminides[J]. Advanced Engineering Materials, 2011, 13(8): 685-699. [29] SEARS V F.Neutron scattering lengths and cross sections[J]. Neutron News, 1992, 3(3): 26-37. [30] CHEETHAM A K, WILKINSON A P.Synchrotron X‐ray and neutron diffraction studies in solid‐state chemistry[J]. Angewandte Chemie International Edition in English, 1992, 31(12): 1557-1570. [31] SHEN C, LISS K D, REID M, et al.In-situ neutron diffraction characterization on the phase evolution of γ-TiAl alloy during the wire-arc additive manufacturing process[J]. Journal of Alloys and Compounds, 2019, 778: 280-287. [32] XU S, REID M, LIN J P, et al.The crystal structure and transformations of the omicron phase Ο in the Ti-Al-Nb system and on the ambiguity of its subvariants Ο1 and Ο2[J]. Scripta Materialia, 2022, 219: 114841. [33] OBASI G C, MOAT R J, LEO PRAKASH D G, et al. In situ neutron diffraction study of texture evolution and variant selection during the α→β→α phase transformation in Ti-6Al-4V[J]. Acta Materialia, 2012, 60(20): 7169-7182. [34] CHEN G, LISS K D, CAO P, et al.Neutron diffraction and neutron radiography investigation into powder sintering of Ti/Al and TiH2/Al compacts[J]. Metallurgical and Materials Transactions B, 2019, 50(1): 429-437. [35] 胡海韬, 张绍英, 白波, 等. 中国散裂中子源小型非直冷式低温恒温器技术[J]. 低温工程, 2016(1): 14-18. HU Haitao, ZHANG Shaoying, BAI Bo, et al.Compact cryostat technology of indirect cooling for China spallation neutron source[J]. Cryogenics, 2016(1): 14-18. [36] WEI J, CHEN H S, CHEN Y W, et al.China spallation neutron source: design, R&D, and outlook[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600(1): 10-13. [37] 王超群. 同步辐射及其在稀有金属材料研究中的应用[J]. 稀有金属材料与工程, 1991, 20(5): 11-17. WANG Chaoqun.Synchronous radiation and its application in the studying of less-common metal materials[J]. Rare Metal Materials and Engineering, 1991, 20(5): 11-17. [38] 王碧涵, 李冰, 刘旭强, 等. 毫秒时间分辨同步辐射X射线衍射和高压快速加载装置及应用[J]. 物理学报, 2022, 71(10): 153-162. WANG Bihan, LI Bing, LIU Xuqiang, et al.Millisecond time-resolved synchrotron radiation X-ray diffraction and high-pressure rapid compression device and its application[J]. Acta Physica Sinica, 2022, 71(10): 153-162. [39] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术[J]. 物理学报, 2017, 66(3): 136-148. LI Xiaodong, LI Hui, LI Pengshan.High pressure single-crystal synchrotron X-ray diffraction technique[J]. Acta Physica Sinica, 2017, 66(3): 136-148. [40] LIU J.High pressure X-ray diffraction techniques with synchrotron radiation[J]. Chinese Physics B, 2016, 25(7): 076106. [41] LISS K D, BARTELS A, SCHREYER A, et al.High-energy X-rays: a tool for advanced bulk investigations in materials science and physics[J]. Texture, Stress, and Microstructure, 2003, 35(3/4): 219-252. [42] RUSH J J.US neutron facility development in the last half-century: a cautionary tale[J]. Physics in Perspective, 2015, 17(2): 135-155. [43] STUDER A J, HAGEN M E, NOAKES T J.Wombat: the high-intensity powder diffractometer at the OPAL reactor[J]. Physica B: Condensed Matter, 2006, 385: 1013-1015. [44] LISS K D.Metals challenged by neutron and synchrotron radiation[J]. Metals, 2017, 7(7): 266. [45] XU S, REID M, LISS K D, et al.In-situ neutron diffraction study of phase stability and equilibria in the Ti-rich part of the Ti-Al binary system[J]. Intermetallics, 2020, 120: 106761. [46] BRAGG W L, WILLIAMS E J.The effect of thermal agitation on atomic arrangement in alloys[J]. Proceedings of the Royal Society A, 1934, 145(855): 699-730. [47] PRINCE E.International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables[M]. Dordrecht: Springer Dordrecht, 2004. [48] TIESINGA E, MOHR P J, NEWELL D B, et al.CODATA recommended values of the fundamental physical constants: 2018[J]. Journal of Physical and Chemical Reference Data, 2021, 50(3): 033105. [49] MENON E S K, FOX A G, MAHAPATRA R. Accurate determination of the lattice parameters of γ-TiAl alloys[J]. Journal of Materials Science Letters, 1996, 15(14): 1231-1233. [50] LI X.Study of phase transformations in γ-based Ti-Al alloys by advanced in-situ diffraction techniques[D]. Wollongong: University of Wollongong, 2019. [51] Materials Project. Data for TiAl[DB/OL]. (2024-12-30) [2025-04-10]. https://materialsproject.org/data/tial_mp-106 1123. [52] Materials Project. Materials data on Ti3Al[DB/OL]. (2020- 07)[2024-12-30]. https://www.example.com/ti3al-data. [53] HOLEC D, REDDY R K, KLEIN T, et al.Preferential site occupancy of alloying elements in TiAl-based phases[J]. Journal of Applied Physics, 2016, 119(20): 205104. [54] APPEL F, BEAVEN P A, WAGNER R.Deformation processes related to interfacial boundaries in two-phase γ-titanium aluminides[J]. Acta Metallurgica et Materialia, 1993, 41(6): 1721-1732. [55] BUMPS E S, KESSLER H D, HANSEN M.Titanium- aluminum system[J]. The Journal of The Minerals, Metals & Materials Society, 1952, 4(6): 609-614. [56] LI X, BHATTACHARYYA D, JIN H, et al.In-situ studies of TiAl polysynthetically twinned crystals: critical fluctuations and microstructural evolution[J]. Journal of Alloys and compounds, 2020, 815: 152454. [57] YEOH L A, LISS K D, BARTELS A, et al.In situ high-energy X-ray diffraction study and quantitative phase analysis in the α+γ phase field of titanium aluminides[J]. Scripta Materialia, 2007, 57(12): 1145-1148. [58] CLEMENS H, MAYER S.Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys[J]. Advanced Engineering Materials, 2013, 15(4): 191-215. [59] IQBAL F.Fracture Mechanisms of γ-TiAl Alloys Investigated by In-Situ Experiments in a Scanning Electron and Atomic Force Microscope[M]. Ann Arbor, Michigan, USA: ProQuest LLC, 2012. [60] XIONG K, LIU X H, GU J F.Orientation-dependent crystal instability of gamma-TiAl in nanoindentation investigated by a multiscale interatomic potential finite-element model[J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(8): 085013. [61] LI X, DIPPENAAR R, SHIRO A, et al.Lattice parameter evolution during heating of Ti-45Al-7.5Nb-0.25/0.5C alloys under atmospheric and high pressures[J]. Intermetallics, 2018, 102: 120-131. [62] BRAIDY N, LE BOUAR Y, FÈVRE M, et al. Determination of the long-range order parameter from the tetragonality ratio of L10 alloys[J]. Physical Review B, 2010, 81(5): 054202. [63] ETO T, ENDO S, IMAI M, et al.Crystal structure of NiO under high pressure[J]. Physical Review B, 2000, 61(22): 14984-14988. [64] IDA T, ANDO M, TORAYA H.Extended pseudo-Voigt function for approximating the Voigt profile[J]. Journal of Applied Crystallography, 2000, 33(6): 1311-1316. [65] MIZUGUCHI M, KOJIMA T, KOTSUGI M, et al.Artificial fabrication and order parameter estimation of L10-ordered FeNi thin film grown on a AuNi buffer layer[J]. Journal of the Magnetics Society of Japan, 2011, 35(4): 370-373. [66] DE FONTAINE D.The number of independent pair-correlation functions in multicomponent systems[J]. Journal of Applied Crystallography, 1971, 4(1): 15-19. [67] LI Q J, SHENG H, MA E.Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways[J]. Nature Communications, 2019, 10(1): 3563. [68] EPP J.X-ray diffraction (XRD) techniques for materials characterization[M]// HÜBSCHEN G, ALTPETER I, TSCHUNCKY R, et al. Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Amsterdam: Elsevier, 2016: 81-124. [69] YANG F, XIAO F H, LIU S G, et al.Isothermal section of Al-Ti-Zr ternary system at 1 273 K[J]. Journal of Alloys and Compounds, 2014, 585: 325-330. [70] 张昌盛, 彭梅, 孙光爱. 中子散射:理解工程材料的必要工具[J]. 物理, 2015, 44(03): 169-178. ZHANG Changsheng, PENG Mei, SUN Guang'ai. Neutron scattering: a necessary tool for understanding engineering materials[J]. Physics, 2015, 44(3): 169-178. [71] LANE N J, VOGEL S C, CASPI E N, et al.High-temperature neutron diffraction and first-principles study of temperature- dependent crystal structures and atomic vibrations in Ti3AlC2, Ti2AlC, and Ti5Al2C3[J]. Journal of Applied Physics, 2013, 113(18): 183519. [72] SRINIVASARAO B, ZHILYAEV A P, MUÑOZ-MORENO R, et al. Effect of high pressure torsion on the microstructure evolution of a gamma Ti-45Al-2Nb-2Mn-0.8vol% TiB2 alloy[J]. Journal of Materials Science, 2013, 48(13): 4599-4605. [73] HANSEN N.Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 2004, 51(8): 801-806. [74] KHADZHIEVA O G, ILLARIONOV A G, POPOV A A, et al.Effect of hydrogen on the structure of quenched orthorhombic titanium aluminide-based alloy and phase transformations during subsequent heating[J]. The Physics of Metals and Metallography, 2013, 114(6): 529-534. [75] CABIOC’H T, EKLUND P, MAUCHAMP V, et al. Structural investigation of substoichiometry and solid solution effects in Ti2Al(Cx,N1-x)y compounds[J]. Journal of the European Ceramic Society, 2012, 32(8): 1803-1811. [76] KHADZHIEVA O G, ILLARIONOV A G, POPOV A A.Effect of aging on structure and properties of quenched alloy based on orthorhombic titanium aluminide Ti2AlNb[J]. The Physics of Metals and Metallography, 2014, 115(1): 12-20. [77] GRABOVETSKAYA G P, RATOCHKA I V, MISHIN I P, et al.Evolution of the structural-phase state of a Ti-Al-V-Mo alloy during severe plastic deformation and subsequent annealing[J]. Russian Physics Journal, 2016, 59(1): 109-115. [78] CHLADIL H F, CLEMENS H, LEITNER H, et al.Phase transformations in high niobium and carbon containing γ-TiAl based alloys[J]. Intermetallics, 2006, 14(10/11): 1194-1198. [79] CHLADIL H F, CLEMENS H, LEITNER H, et al.Experimental studies of phase transformations in a carbon containing Ti‐45Al‐7.5Nb alloy and related thermodynamic simulations[J]. Advanced Engineering Materials, 2005, 7(12): 1131-1134. [80] JABBAR H, MONCHOUX J P, HOUDELLIER F, et al.Microstructure and mechanical properties of high niobium containing TiAl alloys elaborated by spark plasma sintering[J]. Intermetallics, 2010, 18(12): 2312-2321. [81] LIU B L, WANG M S, DU Y L, et al.Size-dependent structural properties of a high-Nb TiAl alloy powder[J]. Materials, 2020, 13(1): 161. [82] XU H, LI X B, XING W W, et al.Solidification pathway and phase transformation behavior in a beta-solidified gamma-TiAl based alloy[J]. Journal of Materials Science & Technology, 2019, 35(11): 2652-2657. [83] CAO S Z, XIAO S L, CHEN Y Y, et al.Microstructure evolution of Ti-46Al-6Nb-(Si,B) alloys during heat treatment with W addition[J]. Rare Metals, 2016, 35(1): 85-92. [84] CHLADIL H F, CLEMENS H, LEITNER H, et al.Experimental studies and thermodynamic simulation of phase transformations in γ-TiAl based alloys[J]. MRS Online Proceedings Library, 2004, 842(1): 363-368. [85] CLEMENS H, BOECK B, WALLGRAM W, et al.Experimental studies and thermodynamic simulations of phase transformations in Ti-(41-45)Al-4Nb-1Mo-0.1B alloys[J]. MRS Online Proceedings Library, 2008, 1128: 306. [86] CHLADIL H F, CLEMENS H, ZICKLER G A, et al.Experimental studies and thermodynamic simulation of phase transformations in high Nb containing γ-TiAl based alloys[J]. International Journal of Materials Research, 2007, 98(11): 1131-1137. [87] LI L, LIU L B, ZHANG L G, et al.Phase equilibria of the Ti-Al-Nb system at 1 000, 1 100 and 1 150 ℃[J]. Journal of Phase Equilibria and Diffusion, 2018, 39(5): 549-561. [88] ZHAO Y, LIU L B, ZHANG L G, et al.The polythermal section of Ti-22Al-xNb (30-78at.%Ti) in Ti-Al-Nb system[J]. Metals, 2020, 10(7): 871. [89] SWAMINATHAN S.Debye-Waller factors in off- stoichiometric-TiAl: effect of ordering of excess Al atoms on Ti sites[J]. Philosophical Magazine Letters, 1996, 73(6): 319-330. [90] LIU Y, LI J S, TANG B, et al.Decomposition and phase transformation mechanisms of α2 lamellae in β-solidified γ-TiAl alloys[J]. Acta Materialia, 2023, 242: 118492. [91] ABE E, KUMAGAI T, NAKAMURA M.New ordered structure of TiAl studied by high-resolution electron microscopy[J]. Intermetallics, 1996, 4(4): 327-333. [92] WALLGRAM W, SCHMÖLZER T, CHA L M, et al. Technology and mechanical properties of advanced γ-TiAl based alloys[J]. International Journal of Materials Research, 2009, 100(8): 1021-1030. [93] ERDELY P, SCHMOELZER T, SCHWAIGHOFER E, et al.In situ characterization techniques based on synchrotron radiation and neutrons applied for the development of an engineering intermetallic titanium aluminide alloy[J]. Metals, 2016, 6(1): 10. [94] MUSI M, GALY B, MONCHOUX J P, et al.In-situ observation of the phase evolution during an electromagnetic-assisted sintering experiment of an intermetallic γ-TiAl based alloy[J]. Scripta Materialia, 2022, 206: 114233. [95] DING J, HUANG S, DONG Z, et al.Thermal stability and lattice strains evolution of high-Nb-containing TiAl alloy under low-cycle-fatigue loading[J]. Advanced Engineering Materials, 2021, 23(9): 2001337. [96] LISS K D, BARTELS A, CLEMENS H, et al. A study of recrystallization and phase transitions in intermetallic titanium aluminides by in situ high-energy X-ray diffraction[J]. Materials Science Forum, 2007, 539/540/541/542/543: 1519-1524. [97] LISS K D, WHITFIELD R E, XU W, et al.In situ synchrotron high-energy X-ray diffraction analysis on phase transformations in Ti-Al alloys processed by equal-channel angular pressing[J]. Journal of Synchrotron Radiation, 2009, 16(6): 825-834. [98] ESIN V A, MALLICK R, DADÉ M, et al.Combined synchrotron X-ray diffraction, dilatometry and electrical resistivity in situ study of phase transformations in a Ti2AlNb alloy[J]. Materials Characterization, 2020, 169: 110654. [99] GUO X, SONG L, LIU X, et al.In-situ synchrotron HEXRD study on the phase transformation mechanisms of the ω-related phases in a Ti4Al3Nb alloy[J]. Materials Characterization, 2023, 200: 112901. [100] OEHRING M, MATTHIESSEN D, BLANKENBURG M, et al.An in situ high‐energy synchrotron X‐ray diffraction study of directional solidification in binary TiAl alloys[J]. Advanced Engineering Materials, 2021, 23(11): 2100151. [101] LISS K D, CLEMENS H, BARTELS A, et al.Phase transitions and recrystallization in a Ti-46at%Al-9at%Nb alloy as observed by in-situ high-energy X-ray diffraction[J]. MRS Online Proceedings Library, 2007, 980(1): 507. [102] LAZURENKO D V, LOZANOV V V, STARK A, et al.In situ synchrotron X-ray diffraction study of reaction routes in Ti-Al3Ti-based composites: the effect of transition metals on L12 structure stabilization[J]. Journal of Alloys and Compounds, 2021, 875: 160004. [103] RACKEL M W, STARK A, GABRISCH H, et al.Orthorhombic phase formation in a Nb-rich γ-TiAl based alloy: an in situ synchrotron radiation investigation[J]. Acta Materialia, 2016, 121: 343-351. [104] RACKEL M, STARK A, GABRISCH H, et al.In situ synchrotron radiation measurements of orthorhombic phase formation in an advanced TiAl alloy with modulated microstructure[J]. MRS Online Proceedings Library, 2015, 1760: 120-126. [105] DISTL B, HAUSCHILDT K, RASHKOVA B, et al.Phase equilibria in the Ti-rich part of the Ti-Al-Nb system: part Ⅰ: low-temperature phase equilibria between 700 and 900 ℃[J]. Journal of Phase Equilibria and Diffusion, 2022, 43(3): 355-381. [106] MENGUCCI P, SANTECCHIA E, GATTO A, et al.Solid-state phase transformations in thermally treated Ti-6Al-4V alloy fabricated via laser powder bed fusion[J]. Materials, 2019, 12(18): 2876. [107] MAYER S, SCHWAIGHOFER E, SCHLOFFER M, et al. The use of in situ characterization techniques for the development of intermetallic titanium aluminides[J]. Materials Science Forum, 2014, 783/784/785/786: 2097-2102. [108] WEI J, FU S N, TANG J Y, et al.China spallation neutron source: an overview of application prospects[J]. Chinese Physics C, 2009, 33(11): 1033-1042. [109] BUNACIU A A, UDRIŞTIOIU E G, ABOUL-ENEIN H Y. X-ray diffraction: instrumentation and applications[J]. Critical Reviews in Analytical Chemistry, 2015, 45(4): 289-299. [110] LIEBSCHNER D, AFONINE P V, MORIARTY N W, et al.Evaluation of models determined by neutron diffraction and proposed improvements to their validation and deposition[J]. Acta Crystallographica Section D-Stuctural Biology, 2018, 74(8): 800-813. [111] POULSEN H F, GARBE S, LORENTZEN T, et al.Applications of high-energy synchrotron radiation for structural studies of polycrystalline materials[J]. Journal of Synchrotron Radiation, 1997, 4(3): 147-154. [112] FISCHER P, ZÜTTEL A. Order-disorder phase transition in NaBD4[J]. Materials Science Forum, 2004, 443/444: 287-290. [113] NIKOLAEV R E, VASILYEVA I G.A new way of phase identification, of AgGaGeS4∙nGeS2 crystals[J]. Journal of Solid State Chemistry, 2013, 203: 340-344.