Effect of Al2O3 addition on microwave dielectric properties of Li2ZnTi3O8 ceramics
DONG Qingchen1, LIU Kunlei1, YU Shihui2, LIU Xiansheng3, ZHANG Weifeng3
1. School of Automation and Information Engineering, Pingdingshan Polytechnic College, Pingdingshan 467000, China; 2. School of Microelectronics, Tianjin University, Tianjin 300072, China; 3. Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
Abstract:Li2ZnTi3O8 was synthesized by solid-state reaction. The microwave dielectric ceramics composed of Li2ZnTi3O8 and Al2O3 were prepared (The Al2O3 mass is 0-7% of Li2ZnTi3O8 mass). The effects of Al2O3 addition amount on the microstructures and dielectric properties of the samples were investigated. The results show that the primary phase of the composite ceramics is cubic structure Li2ZnTi3O8. ZnAl2O4 and TiO2 phases are observed with the increase of Al2O3 addition amount, which have a great influence on the microwave dielectric properties of the ceramic samples. The addition of Al2O3 can inhibit the growth of Li2ZnTi3O8 grains. When the sintering temperature is 1 100 ℃ and the Al2O3 addition is 1%, the microwave dielectric ceramics composed of Li2ZnTi3O8 and Al2O3 obtain the best dielectric properties: εr ≈ 26.1, Q×f ≈ 87 900 GHz, τf ≈13.3×10-6 ℃-1.
[1] 刘伟, 冷寒生, 李波. 钴离子取代对Ca5Mg(4-x)Cox(VO4)6陶瓷微波介电性能的影响[J]. 硅酸盐学报, 2021, 49(3): 441-447. LIU Wei, LENG Hansheng, LI Bo.Effect of Co substitution on microwave dielectric properties of Ca5Mg4-xCox(VO4)6 ceramics[J]. Journal of The Chinese Ceramic Society, 2021, 49(3): 441-447. [2] 谢鸿远, 于泽宗, 尹长志, 等. ⅢA族元素化合物微波介电性能的研究进展[J]. 电子元件与材料, 2021, 40(6): 536-546. XIE Hongyuan, YU Zezong, YIN Changzhi, et al.Research progress on microwave dielectric properties of compounds with ⅢA group elements[J]. Electronic Components and Materials, 2021, 40(6): 536-546. [3] LI Y, FU R, GAO M Y, et al.Improved Zn0.9Mg0.1Al2O4 microwave dielectric ceramics with high thermal conductivity[J]. Journal of Electronic Materials, 2021, 50(6): 3372-3379. [4] 孙赫. 电介质物理与微波介质陶瓷的研究进展[J]. 电子质量, 2021, 4(4): 1-4. SUN He.Research progress of dielectric physics and microwave dielectric ceramics[J]. Electronics Quality, 2021, 4(4): 1-4. [5] CHEN S L, LI L X, YU S H, et al.High dielectric constant and high-Q in microwave ceramics of SrTiO3 co-doped with aluminum and niobium[J]. Journal of the American Ceramic Society, 2018, 101(5): 1835-1840. [6] CHEN S L, LI L X, YU S H, et al.The effects of inequivalent La3+ introduction on the structure and dielectric properties of SrTiO3 ceramic at microwave range[J]. Materials Chemistry and Physics, 2018, 216: 339-344. [7] GEORGE S, SEBASTIAN M T.Synthesis and microwave dielectric properties of novel temperature stable high Q Li2ATi3O8 (A=Mg, Zn) ceramics[J]. Journal of the American Ceramic Society, 2010, 93(8): 2164-2166. [8] ZHANG P, HUA Y B, XIA W S, et al.Effect of H3BO3 on the low temperature sintering and microwave dielectric properties of Li2ZnTi3O8 ceramics[J]. Journal of Alloys and Compounds, 2012, 534(5): 9-12. [9] LI W, LI J H, SHEN J X, et al.Crystal structure, Raman spectra, and microwave dielectric properties of high-Q Li2ZnTi3O8 systems with Nb2O5 addition[J]. Ceramics International, 2021, 47: 8601-8609. [10] ZITANI M K, EBADZADEH T, BANIJAMALI S, et al.Microstructural and microwave dielectric properties of LZT (Li2ZnTi3O8) ceramics sintered in presence of bismuth borate glass for LTCC applications[J]. Ceramics International, 2018, 44(4): 4016-4026. [11] 朱伟君, 陈金鑫, 高宇晗, 等. 硅基掺铒二氧化钛薄膜发光器件的电致发光:共掺镱的增强发光作用[J]. 物理学报, 2019, 68(12): 115-121. ZHU Weijun, CHEN Jinxin, GAO Yuhan, et al.Electroluminescence from silicon-based light-emitting device with erbium-doped TiO2 films: Enhancement effect of ytterbium codoping[J]. Acta Physca. Sinica, 2019, 68(12): 115-121. [12] KOUR S.Structural and magnetic investigation of Al3+ and Cr3+ substituted Ni-Co-Cu nanoferrites for potential applications[J]. Solid State Sciences, 2020, 110: 106445. [13] ULLAH B, LEI W, CAO Q S, et al.Structure and microwave dielectric behavior of a-site-doped Sr(1-1.5x)CexTiO3 ceramics system[J]. Journal of the American Ceramic Society, 2016, 99(10): 3286-3292. [14] FU P, WANG Z Y, LIN Z D, et al.The microwave dielectric properties of transparent ZnAl2O4 ceramics fabricated by spark plasma sintering[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(13): 9589-9595. [15] LEI M.The impact of composite effect on dielectric constant and tunability in ferroelectric-dielectric system[J]. Journal of the American Ceramic Society, 2015, 98(10): 3250-3258. [16] HE H, XU Y B.A unified equation for predicting the dielectric constant of a two phase composite[J]. Applied Physics Letter, 2014, 104(6): 062906. [17] KIM D W, PARK B W, CHUNG J H, et al.Mixture behavior and microwave dielectric properties in the low-fired TiO2-CuO system[J]. Japanese Journal of Applied Physics, 2000, 39(5): 2696-2700. [18] ZHENG H R, YU S H, LI L X, et al.Crystal structure, mixture behavior, and microwave dielectric properties of novel temperature stable (1-x)MgMoO4-xTiO2 composite ceram[J]. Journal of the European Ceramic Society, 2017, 37(15): 4661-4665. [19] WU M J, ZHANG Y C, CHEN J D, et al.Preparation, performances and reaction process of NiZrNb2O8 microwave dielectric ceramics[J]. Solid State Phenomena, 2018, 281: 591-597. [20] HE L, JIANG X W, XU Y J, et al.Low-temperature sintering and microwave dielectric properties of a new Ba/Ti-based diphase composite ceramic[J]. Journal of Materials Science, 2022, 57: 12356-12363. [21] 王刚. 低损耗铌酸盐系微波介质材料低温烧结与性能调控研究[D]. 成都: 电子科技大学, 2021. WANG Gang.Low temperature sintering and property control of low loss niobate microwave dielectric materials [D]. Chengdu: University of Electronic Science and Technology of China, 2021. [22] REN H, PENG H Y, XIE T Y, et al.Temperature stable microwave dielectric ceramics in Li2ZnTi3O8-based composite for LTCC applications[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(5): 12978-12985. [23] YANG H C, ZHANG S R, YANG H Y, et al.NdNb1-x (Mg1/4W3/4)xO4 (0.02≤x≤0.06) solid solution characterized by infrared spectrum and complex chemical theory[J]. Journal of Alloys and Compounds, 2019, 787(2): 358-366.