|
|
High-performance B4C-LaB6 composite ceramics fabricated via rapid hot press sintering |
XU Zhiwei, PENG Ke, YUAN Tiechui |
State Key Laboratory for Light Weight and High Strength Structural Materials, Central South University, Changsha 410083, China |
|
|
Abstract In order to solve the problem that boron carbide (B4C) is difficult for sintering densification and poor toughness, the B4C-LaB6 composite ceramics were fabricated via rapid hot press sintering at 2 000 ℃ and 30 MPa with B4C and lanthana (La2O3) as raw materials. The effects of additive La2O3 content on the microstructures and mechanical properties of B4C-LaB6 composite ceramics were investigated, and the toughening mechanism of LaB6 was studied. The results show that the B4C-LaB6 composite ceramics with w(La2O3)=3% have better comprehensive mechanical properties, the relative density, Vickers hardness, bending strength, and fracture toughness reach 99.51%, 36.56 GPa, 547.43 MPa, and 4.18 MPa∙m1/2, respectively. LaB6 refines the grain, and improves the relative density and fracture toughness of the B4C-LaB6 composite ceramics. The toughening mechanism of LaB6 is related to crack deflection and grain cracking.
|
Received: 26 October 2023
Published: 26 March 2024
|
|
|
|
|
[1] RIERA R A, BAVDEKAR S, DEVRIES M, et al.Characterization of BAM-B4C composites prepared by spark plasma sintering[J]. Ceramics International, 2021, 47(8): 11738-11747. [2] WANG S, GAO S B, XING P F, et al.Pressureless liquid-phase sintering of B4C with MoSi2 as a sintering aid[J]. Ceramics International, 2019, 45(10): 13502-13508. [3] XIONG Y, DU X W, XIANG M Y, et al.Densification mechanism during reactive hot pressing of B4C-ZrO2 mixtures[J]. Journal of the European Ceramic Society, 2018, 38(12): 4167-4172. [4] LIU G Q, CHEN S X, ZHAO Y W, et al.Effect of Ti and its compounds on the mechanical properties and microstructure of B4C ceramics fabricated via pressureless sintering[J]. Ceramics International, 2021, 47(10): 13756-13761. [5] YIN F B, YUAN J T, CHEN M D, et al.Mechanical property and ballistic resistance of graphene platelets/B4C ceramic armor prepared by spark plasma sintering[J]. Ceramics International, 2019, 45(17): 23781-23787. [6] 罗勇, 李专, 吴佳琦. B4C改性Cu基刹车片配对C/C-SiC的摩擦学行为及机理[J]. 粉末冶金材料科学与工程, 2023, 28(3): 262-275. LUO Yong, LI Zhuan, WU Jiaqi.Tribological performance and mechanism of B4C modified Cu-based brake pads mated with C/C-SiC[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(3): 262-275. [7] 周哲, 夏大旺, 李智, 等. 溶胶凝胶、碳热/硼热还原法制备ZrB2-SiC-LaB6超细复相粉体[J]. 粉末冶金材料科学与工程, 2023, 28(3): 223-232. ZHOU Zhe, XIA Dawang, LI Zhi, et al.Preparation of ZrB2-SiC-LaB6 ultrafine multiphase powders by sol-gel and carbothermal/borothermal reduction[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(3): 223-232. [8] 张凯, 刘伟, 张磊, 等. HVAF喷涂La2O3改性WC-20Cr3C2-11NiMo涂层的耐磨耐蚀性能[J]. 粉末冶金材料科学与工程, 2021, 26(1): 70-76. ZHANG Kai, LIU Wei, ZHANG Lei, et al.Wear resistance and corrosion resistance of La2O3 modified WC-20Cr3C2- 11NiMo coatings sprayed by HVAF[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(1): 70-76. [9] 徐杰, 刘如铁, 熊翔, 等. La2O3添加量对Fe-3Mo-3Cr- 0.6V-0.5Mn-0.8C合金组织与力学性能的影响[J]. 粉末冶金材料科学与工程, 2017, 22(6): 808-814. XU Jie, LIU Rutie, XIONG Xiang, et al.Effects of La2O3 content on microstructure and mechanical property of Fe-3Mo-3Cr-0.6V-0.5Mn-0.8C alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(6): 808-814. [10] YANG M S, ZHUANG Y X, XING P F.High-performance B4C-LaB6 composite ceramics fabricated via hot-pressing sintering with La2O3 as sintering additive[J]. Ceramics International, 2021, 47(23): 32675-32684. [11] 胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010: 154-185. HU Gengxiang, CAI Xun, RONG Yonghua.Fundamentals of Materials Science[M]. Shanghai: Shanghai Jiaotong University Press, 2010: 154-185. [12] 张梅. 碳化硼(B4C)陶瓷放电等离子烧结致密化动力学研究[D]. 长沙: 中南大学, 2022. ZHANG Mei.Densification kinetics of boron carbide (B4C) ceramics during spark plasma sintering[D]. Changsha: Central South University, 2022. [13] FAN X M, XU L J, WEI S Z, et al.Mechanical properties and strengthening mechanism of the hydrothermal synthesis of nano-sized alpha-Al2O3 ceramic particle reinforced molybdenum alloy[J]. Ceramics International, 2020, 46(8): 10400-10408. [14] MOSHTAGHIOUN B M, ORTIZ A L, GÓMEZ-GARCÍA D, et al. Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition[J]. Journal of the European Ceramic Society, 2013, 33(8): 1395-1401. [15] ZHANG X R, ZHANG Z X, WEN R L, et al.Comparisons of the densification, microstructure and mechanical properties of boron carbide sintered by hot pressing and spark plasma sintering[J]. Ceramics International, 2018, 44(2): 2615-2619. [16] IVASHCHENKO V I, TURCHI P, SHEVCHENKO I, et al.Electronic, thermodynamics and mechanical properties of LaB6 from first-principles[J]. Physica B-Condensed Matter, 2018, 531: 216-222. [17] LEVIN L, FRAGE N, DARIEL M P.A novel approach for the preparation of B4C-based cermets[J]. International Journal of Refractory Metals & Hard Materials, 2000, 18(2/3): 131-135. [18] GONG Z Y, ZHAO W, GUAN K, et al.Influence of grain boundary and grain size on the mechanical properties of polycrystalline ceramics: grain-scale simulations[J]. Journal of the American Ceramic Society, 2020, 103(10): 5900-5913. [19] 蔺仕琦, 袁铁锤, 王飞. 料浆烧结法制备铌基Y2O3涂层的组织及抗热震性能[J]. 粉末冶金材料科学与工程, 2023, 28(3): 244-252, 287. LIN Shiqi, YUAN Tiechui, WANG Fei.Microstructure and thermal shock resistance of Nb/Y2O3 coating prepared by slurry sintering[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(3): 244-252, 287. [20] YAO W K, YAN J B, LI X C, et al.In situ ZrB2 formation in B4C ceramics and its strengthening mechanism on mechanical properties[J]. Materials, 2022, 15(22): 7961. [21] YUE X, CHEN B, ZHAO J, et al.Microstructures and properties of B4C ceramics prepared by hot-pressing method[J]. Rare Metal Materials and Engineering, 2011, 40: 533-535. [22] ZHANG X R, ZHANG Z X, WANG W M, et al.Microstructure and mechanical properties of B4C-TiB2-SiC composites toughened by composite structural toughening phases[J]. Journal of the American Ceramic Society, 2017, 100(7): 3099-3107. [23] WANG A Y, HU L X, GUO W C, et al.Synergistic effects of TiB2 and graphene nanoplatelets on the mechanical and electrical properties of B4C ceramic[J]. Journal of the European Ceramic Society, 2022, 42(3): 869-876. [24] WANG S, DENG Y Y, YANG M S, et al.Microstructure and mechanical property of B4C-SiC-CrB2 composites fabricated via reactive hot pressing[J]. Ceramics International, 2020, 46(18): 29261-29270. [25] FENG S Y, LI Q L, LIU W, et al.Microstructure and mechanical properties of Al-B4C composite at elevated temperature strengthened with in situ Al2O3 network[J]. Rare Metals, 2020, 39(6): 671-679. |
|
|
|