Abstract Tungsten skeleton with uniformly distributed pores is the key material for producing high-performance electronic cathodes and discharge lamps. This study systematically investigated the effects of pressing pressure on the pore structure, mechanical properties of the tungsten skeleton and the performance of discharge lamp. The results show that with the increase of pressing pressure, the porosity and average pore size of the tungsten skeleton decrease, the microhardness and compressive strength increase, and the uniformity index of pore distribution first increases and then decreases. When the pressing presure is 500 MPa, the pore structure and mechanical properties of the tungsten skeleton are the best, the porosity is 26.29%, the average pore size is 1.24 μm, the uniformity index of pore distribution is 4.17, the microhardness is 1 506 MPa, and the compressive strength is 810 MPa. The xenon lamp prepared by the tungsten skeleton as the cathode substrate do not show any flashovers after continuous flashing for 500 000 times, and its cathode emission performance is stable, and the tungsten cathode has not reach its lifespan limit yet, which shows a significant improvement in lifespan compared to existing cathodes.
ZHANG Yuning,WANG Dezhi,WU Zhuangzhi, et al. Effects of pressing pressure on the pore structure and performance of tungsten cathode skeleton for discharge lamps[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(4): 361-367.
[1] KRULENYA P A, MASLENNIKOV O Y.Advanced structure of cathode for gas discharge lamp of super high pressure[J]. Applied Surface Science, 2003, 215(1/4): 101-104. [2] SAIDI S, LOUKIL H, KHODJA K, et al.Experimental and theoretical investigations of dielectric barrier discharge (DBD) lamp in Ne/Xe mixture[J]. IEEE Transactions on Plasma Science, 2022, 50(7): 2147-2155. [3] DRESSEL K, GOERZ B.Microstructural characterisation of glass ceramics as a component part of high pressure discharge lamps[J]. Practical Metallography, 2016, 53(9): 560-575. [4] 曹贵川, 祁康成, 王小菊. 脉冲氙灯阴极制备及性能研究[J]. 光源与照明, 2018(2): 36-38, 41. CAO Guichuan, QI Kangcheng, WANG Xiaoju.Preparation and performance study of pulse xenon lamp cathode[J]. Lamps and Lighting, 2018(2): 36-38, 41. [5] 陈大情. 20 000~40 000 h多电极特长寿命气体放电灯泡[J]. 中国照明电器, 2013(2): 32-33. CHEN Daqing.20 000-40 000 hours multi electrode extra long life gas discharge bulb[J]. China Light & Lighting, 2013(2): 32-33. [6] 陈大华. 氙灯的技术特性及其应用[J]. 光源与照明, 2002(4): 18-20. CHEN Dahua.Technical characteristics and applications of xenon lamps[J]. Lamps and Lighting, 2002(4): 18-20. [7] RAKIC M, PICHLER G.Time evolution of the spectrum of the cesium high pressure discharge light source[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 151: 169-173. [8] DIOP N A, BAKHOUM J P, DIAW P A, et al.Alternative to high pressure mercury vapor lamp for photo induced fluorescence analytical methods; application to the determination of pesticides in water[J]. Analytical Sciences, 2021, 37(8): 1177-1180. [9] CHITTKA U, POSTMA P, SCHLAGER W.Electrodes for gas discharge lamps[J]. Applied Surface Science, 1997, 111: 302-310. [10] KIRKWOOD D M, GROSS S J, BALK T J, et al.Frontiers in thermionic cathode research[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2061-2071. [11] 阴生毅, 王宇, 王欣欣. 钨粉分级及其在M型阴极上的应用[J]. 中国钨业, 2010, 25(2): 31-33. YIN Shengyi, WANG Yu, WANG Xinxin.Tungsten powder classification and its application on M-type cathodes[J]. China Tungsten Industry, 2010, 25(2): 31-33. [12] LI B, SUN Z, JIN H, et al.Fabrication of homogeneous tungsten porous matrix using spherical tungsten powders prepared by thermal plasma spheroidization process[J]. International Journal of Refractory Metals & Hard Materials, 2016, 59: 105-113. [13] 周增林, 何学良, 李艳, 等. 扩散阴极用多孔钨基体材料的评述[J]. 稀有金属材料与工程, 2019, 48(7): 2386-2392. ZHOU Zenglin, HE Xueliang, LI Yan, et al.Review of porous tungsten substrate materials for diffusion cathodes[J]. Rare Metal Materials and Engineering, 2019, 48(7): 2386-2392. [14] 尚吉花, 杨新宇, 孙大鹏, 等. 钡钨阴极优化与热电子发射性能[J]. 物理学报, 2022, 71(4): 250-259. SHANG Jihua, YANG Xinyu, SUN Dapeng, et al.Tungsten cathode optimization and hot electron emission performance[J]. Acta Physica Sinica, 2022, 71(4): 250-259. [15] 王子玉, 尚吉花, 杨新宇, 等. 钡-钨阴极的组织特性与热电子发射性能[J]. 强激光与粒子束, 2021, 33(5): 33-40. WANG Ziyu, SHANG Jihua, YANG Xinyu, et al.Organizational characteristics and hot electron emission properties of barium-tungsten cathodes[J]. High Power Laser and Particle Beams, 2021, 33(5): 33-40. [16] 李睿, 秦明礼, 陈鹏起, 等. 金属注射成形制备多孔钨阴极基底[J]. 真空电子技术, 2016(5): 45-47. LI Rui, QIN Mingli, CHEN Pengqi, et al.Preparation of porous tungsten cathode substrates by metal injection molding[J]. Vacuum Electronics, 2016(5): 45-47. [17] 吴化波, 王志法, 刘金文, 等. 钨骨架湿氢烧结工艺研究[J]. 粉末冶金材料科学与工程, 2008, 13(6): 365-368. WU Huabo, WANG Zhifa, LIU Jinwen, et al.Study on wet hydrogen sintering process of tungsten skeleton[J]. Materials Science and Engineering of Powder Metallurgy, 2008, 13(6): 365-368. [18] 王发展, 张晖, 丁秉钧. 钨阴极材料及其研究进展[J]. 材料导报, 2001, 15(6): 10-12. WANG Fazhan, ZHANG Hui, DING Bingjun.Tungsten cathode materials and their research progress[J]. Materials Reports, 2001, 15(6): 10-12. [19] YANG F, WANG J, LIU W, et al.Studies on the pressed yttrium oxide-tungsten matrix as a possible dispenser cathode material[J]. Materials Chemistry & Physics, 2015, 149: 288-294. [20] LIU Z M, CHEN S Y, CUI S L, et al.Experimental investigation of focusing cathode region by cooling tungsten[J]. International Journal of Thermal Sciences, 2019, 138: 24-34. [21] HONG Y, LEE S, SHIN J W, et al.Control over the emission properties of impregnated dispenser cathodes via surface pore density[J]. Current Applied Physics, 2016, 16(10): 1431-1436. [22] 石俊, 刘宁, 刘爱军, 等. 压制压力对纯钨显微组织和力学性能的影响[J]. 热处理, 2015, 30(4): 31-35. SHI Jun, LIU Ning, LIU Aijun, et al.Effect of pressing pressure on the microstructure and mechanical properties of pure tungsten[J]. Heat Treatment, 2015, 30(4): 31-35. [23] 黄培云. 粉末冶金原理[M]. 北京: 冶金工业出版社, 1982. HUANG Peiyun.Powder Metallurgy Principle[M]. Beijing: Metallurgical Industry Press, 1982. [24] 冯威, 栾道成, 王正云, 等. 成形压力与粉末粒径对钨铜复合材料烧结性能的影响[J]. 粉末冶金材料科学与工程, 2007, 12(6): 354-358. FENG Wei, LUAN Daocheng, WANG Zhengyun, et al.The effect of forming pressure and powder particle size on the sintering properties of tungsten copper composite materials[J]. Materials Science and Engineering of Powder Metallurgy, 2007, 12(6): 354-358. [25] 董虹星, 刘秋平, 贺跃辉, 等. 压制压力对Ni3Al金属间化合物多孔材料孔结构及抗拉强度的影响[J]. 材料科学与工程学报, 2012, 30(5): 710-714. DONG Hongxing, LIU Qiuping, HE Yuehui, et al.Effect of pressing pressure on the pore structure and tensile strength of Ni3Al intermetallic compound porous materials[J]. Journal of Materials Science and Engineering, 2012, 30(5): 710-714. [26] SELCUK C, BENTHAM R, MORLEY N, et al.Microhardness as a measure of homogeneity of porous tungsten[J]. Materials Letters, 2004, 58(12/13): 1873-1876. [27] 方荣, 田宏, 陆玉新, 等. 浸渍阴极基体研究进展[J]. 真空电子技术, 2015(6): 45-49. FANG Rong, TIAN Hong, LU Yuxin, et al.Progress in the study of impregnated cathode substrates[J]. Vacuum Electronics, 2015(6): 45-49. [28] 欧阳明亮, 廉冀琼, 王威, 等. 气体放电灯用特种钨电极的制备新工艺[J]. 中国照明电器, 2013(3): 18-20. OUYANG Mingliang, LIAN Jiqiong, WANG Wei, et al.New process for the preparation of special tungsten electrodes for gas discharge lamps[J]. China Light & Lighting, 2013(3): 18-20.