|
|
Effects of alloy additives on oxidation behavior and correlative characteristics of WC-based cemented carbides |
WANG Chunguang1, ZHANG Li1, HUANG Xiang1, NIE Renxin1, ZHONG Zhiqiang2, LONG Jiawei1 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. Chongyi Zhangyuan Tungsten Co., Ltd., Ganzhou 341300, China |
|
|
Abstract To explore the methods to improve the oxidation resistance at high temperature and the physical and mechanical properties simultaneously. Thus, this research designed WC-6Co-6Ni, WC-6Co-6Ni-1Cr3C2, WC-6Co- 6Ni-1CeO2 and WC-12Co-1CeO2 WC-based cemented carbides, corresponding to alloys 1#-4#, respectively. The microstructure, physical and mechanical properties and oxidation behavior of the alloys at 700 ℃ for 16 h were investigated by comparison. The results show that the presence of rare earth-containing oxide dispersion phase in the alloy does not lead to the decrease of alloy strength, and the alloy hardness follows the coupling law of hardness, grain size and volume fraction of the phase components. The hardness of alloy 4# is the highest, followed by alloy 2#. The influence of Co and Ni binder metals on the hardness of cemented carbides is significant. Both Cr3C2 and CeO2 can significantly improve the oxidation resistance of the alloys at 700 ℃, but the improvement effect of Cr3C2 is better than that of CeO2. The high temperature oxidation resistance and physical and mechanical properties of WC-based cemented carbide can be improved synchronously by adding appropriate amount of Cr3C2 and CeO2, and using Ni to partially replace Co.
|
Received: 03 April 2023
Published: 06 July 2023
|
|
|
|
|
[1] KATIYAR P K.A comprehensive review on synergy effect between corrosion and wear of cemented tungsten carbide tool bits: A mechanistic approach[J]. International Journal of Refractory Metals and Hard Materials, 2020, 92: 105315. [2] 曹瑞军, 林晨光, 马旭东, 等. 钴含量对粗晶硬质合金磨损性能的影响[J]. 粉末冶金材料科学与工程, 2015, 20(6): 860-864. CAO Ruijun, LIN Chenguang, MA Xudong, et al.Effect of Cobalt content on wear property of coarse-grained cemented carbide[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(6): 860-864. [3] 刘海军, 伍文辉, 汪巍, 等. 不同粘结剂成分WC-30% (Co-Ni-Cr)粗晶硬质合金高温氧化行为的研究[J]. 硬质合金, 2022, 39(3): 182-188. LIU Haijun, WU Wenhui, WANG Wei, et al.High temperature oxidation behavior of coarse-grained cemented carbides with different binder components WC-30%(Co- Ni-Cr)[J]. Cemented Carbide, 2022, 39(3): 182-188. [4] 王雁洁, 刘咏, 杨新宇. TiN添加量对WC-TiC-TaC-8.0Co硬质合金组织与性能的影响[J]. 粉末冶金材料科学与工程, 2020, 25(1): 35-39. WANG Yanjie, LIU Yong, YANG Xinyu.Effect of TiN addition on microstructure and properties of WC-TiC-TaC- 8.0Co cemented carbides[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(1): 35-39. [5] 程登峰, 孙东平, 刘娜娜. Ti(C,N)含量和烧结温度对梯度硬质合金脱β层厚度的影响[J]. 粉末冶金材料科学与工程, 2021, 26(1): 47-54. CHENG Dengfeng, SUN Dongping, LIU Nana.Effect of Ti(C,N) content and sintering temperature on the thickness of deβ layer of graded cemented carbide[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(1): 47-54. [6] 刘豪, 孟湘君, 管玉明, 等. 硬质合金辊环材料研究现状与发展趋势[J]. 硬质合金, 2022, 39(6): 505-512. LIU Hao, MENG Xiangjun, GUAN Yuming, et al.Research status and development trend of carbide roller ring materials[J]. Cemented Carbide, 2022, 39(6): 505-512. [7] 周书助, 兰登飞, 鄢玲利, 等. 钢结硬质合金的研究进展[J]. 粉末冶金材料科学与工程, 2015, 20(5): 661-669. ZHOU Shuzhu, LAN Dengfei, YAN Lingli, et al.Research progress of steel-bonded cemented carbide[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(5): 661-669. [8] 彭文. WC/Co纳米复合粉原料制备硬质合金细晶粒顶锤的方法研究[J]. 超硬材料工程, 2017, 29(5): 17-24. PENG Wen.Study on preparation of fine grain jacking hammer from WC/Co nanocomposite powder[J]. Superhard Materials Engineering, 2017, 29(5): 17-24. [9] LI Y S, DENG J X, ZHANG H, et al.Oxidation resistance of cemented carbide tools[J]. Journal of Materials Engineering, 2009(2): 34-42. [10] LUO W Y, LIU Y Z, LIU X H, et al.Oxidation behavior of ultrafine WC-based cemented carbides with AlxCoCrCuFeNi high-entropy alloy binders[J]. Ceramics International, 2021, 47(6): 8498-8509. [11] ARISTIZABAL M, SANCHEZ J, RODRIGUEZ N, et al.Comparison of the oxidation behaviour of WC-Co and WC-Ni-Co-Cr cemented carbides[J]. Corrosion Science, 2011, 53(9): 2754-2760. [12] ARISTIZABAL M, RODRIGUEZ N, IBARRETA F, et al.Liquid phase sintering and oxidation resistance of WC-Ni- Co-Cr cemented carbides[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(4): 516-522. [13] 刘育林, 朱圣宇, 于源, 等. 铝掺杂WC-Co基硬质合金的高温摩擦学性能、磨损机理及抗氧化性能研究[J]. 摩擦学学报, 2019, 39(5): 565-576. LIU Yulin, ZHU Shengyu, YU Yuan, et al.Study on high temperature tribological properties, wear mechanism and oxidation resistance of aluminum doped WC-Co cemented carbide[J]. Tribology Journal, 2019, 39(5): 565-576. [14] 张立, 朱骥飞, 杨洋, 等. 添加剂对特粗晶和超粗晶硬质合金高温抗氧化性能的影响[J]. 粉末冶金材料科学与工程, 2015, 20(4): 595-602. ZHANG Li, ZHU Jifei, YANG Yang, et al.Effect of additives on oxidation resistance of ultra-coarse and ultra-coarse cemented carbide at high temperature[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(4): 592-602. [15] 邹芹, 张萌蕾, 李艳国. 添加剂改性WC硬质合金的性能与应用研究[J]. 制造技术与机床, 2021(7): 9-15. ZOU Qin, ZHANG Menglei, LI Yanguo.Study on performance and application of additive modified WC cemented carbide[J]. Manufacturing Technology and Machine Tools, 2021(7): 9-15. [16] LONG J Z, ZHANG W B, WANG Y R, et al.A new type of WC-Co-Ni-Al cemented carbide: grain size and morphology of γ′-strengthened composite binder phase[J]. Scripta Materialia, 2017, 126: 33-36. [17] WANG J F, ZUO D W, ZHU L, et al.Effect of Y2O3 addition on high-temperature oxidation of binderless tungsten carbide[J]. Frontiers in Materials, 2021, 8: 1-11. [18] ZHANG L, CHEN S, SCHUBERT W D, et al.Thermo- stability of rare earth doped cemented carbides and the starting materials in oxygen[J]. P/M Science & Technology Briefs, 2004, 6(1): 15-18. [19] CHEVALIER S, BONNET G, LARPIN J, et al.The combined effect of refractory coatings containing reactive elements on high temperature oxidation behavior of chromia-forming alloys[J]. Corrosion science, 2003, 45(8): 1661-1673. [20] LI G P, PENG Y B, YAN L W, et al.Effects of Cr concentration on the microstructure and properties of WC-Ni cemented carbides[J]. Journal of Materials Research and Technology, 2020, 9(1): 902-907. [21] 唐启佳, 李重典, 王雁洁, 等. Cr3C2添加量对WC-10Co硬质合金组织与性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(5): 460-466. TANG Qijia, LI Chongdian, WANG Yanjie, et al.Effect of addition of Cr3C2 on microstructure and properties of WC-10Co cemented carbides[J]. International Journal of Refractory Metals and Hard Materials, 2018, 23(5): 460-466. [22] 王国栋. 硬质合金生产原理[M]. 2版. 北京: 冶金工业出版社, 1990: 39. WANG Guodong.Production principle of Cemeted Carbides [M]. 2nd ed. Beijing: Metallurgical Industry Press, 1990: 39. [23] ZHANG L, XIE M W, CHENG X, et al.Micro characteristics of binder phases in WC-Co cemented carbides with Cr-V and Cr-V-RE additives[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36(1): 211-219. [24] SRIVASTAVA P, WILHELM F, NEY A, et al.Magnetic moments and Curie temperatures of Ni and Co thin films and coupled trilayers[J]. Physical Review B, 1998, 58(9): 5701-5706. [25] HAGLUND O.Curie temperature of alloys, its measurement and technical importance[J]. Journal of Thermal Analysis, 1982, 25(1): 21-43. [26] HAN Y, CHOI K, OH H, et al.Cobalt polyoxometalate-derived CoWO4 oxygen-evolving catalysts for efficient electrochemical and photoelectrochemical water oxidation[J]. Journal of Catalysis, 2018, 367: 212-220. [27] RAJ P M.A critical assessment of the standard molar gibbs free energy of formation of NiWO4[J]. Bulletin of Materials Science, 1995, 18(5): 623-630. [28] BASYIR B, IZZUDDIN H, HERMANTO B, et al.Remarkable improvement in high temperature oxidation resistance of WC-12Co by the addition of CrSi2[J]. International Journal of Refractory Metals & Hard Materials, 2021, 96(1): 105497. [29] CHEN L, YI D, WANG B, et al.The selective oxidation behaviour of WC-Co cemented carbides during the early oxidation stage[J]. Corrosion Science, 2015, 94: 1-5. |
|
|
|