|
|
Effect of cemented carbide grain size on diamond coating |
HUA Tengyu1, XIA Xin1, MA Li1, WEI Qiuping1,2, SHI Pengcheng3, 4 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. School of Materials Science and Engineering, Central South University, Changsha 410083, China; 3. Laboratory of Space Science and Low-light Detection Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China; 4. College of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Boron-doped diamond coatings were deposited on YG6 cemented carbide substrates with different grain sizes (0.4, 0.6, 1.0 and 2.0 μm) by hot wire chemical vapor deposition. The morphology and composition of the cemented carbide substrates were characterized, and the morphology, structure, composition and adhesion of the diamond coating were also analyzed by scanning electron microscope, X-ray diffraction, Raman spectroscopy and Rockwell hardness tester. The effects of grain size of cemented carbide substrates on the growth and adhesion properties of diamond coatings were studied and compared. The results show that with the grain size of cemented carbide increasing from 0.4 μm to 2.0 μm, the grain size of diamond gradually increases and its uniformity is better. The peak intensity ratio (ID/IG) of diamond and graphite Raman peaks increases from 4.74 to 6.53. There is a good correlation between the film substrate bonding performance and the internal stress of the coating, as well as the half peak width of diamond, which are affected by the grain mismatch of the matrix alloy, while the internal stress of the coating is also affected by boron doping. When the cemented carbide grain size is 2.0 μm, the diamond coating has the maximum ID/IG ratio of 6.53. The internal stress of diamond coating is also the lowest, which is only 1.588 GPa. And the film-substrates adhesion is optimal that can reach the HF1 level under the pressure of 600 N.
|
Received: 04 March 2023
Published: 04 May 2023
|
|
|
|
|
[1] 吕反修. 化学气相沉积金刚石膜的研究与应用进展[J]. 材料热处理学报, 2010, 31(1): 15-28. LÜ Fanxiu.Progress in research and application development of CVD diamond film[J]. Transactions of Materials and Heat Treatment, 2010, 31(1): 15-28. [2] CABRAL G, GAEBLER J, LINDNER J, et al.A study of diamond film deposition on WC-Co inserts for graphite machining: Effectiveness of SiC interlayers prepared by HFCVD[J]. Diamond and Related Materials, 2008, 17(6): 1008-1014. [3] POLINI R.Chemically vapour deposited diamond coatings on cemented tungsten carbides: substrate pretreatments, adhesion and cutting performance[J]. Thin Solid Films, 2006, 515(1): 4-13. [4] 史燕. 基于切削技术的金刚石刀具磨损特征分析[J]. 金刚石与磨料磨具工程, 2022, 42(1): 112-118. SHI Yan.Analysis on wear characteristics of diamond tools based on cutting technology[J]. Diamond & Abrasives Engineering, 2022, 42(1): 112-118. [5] 方莉俐. CVD金刚石薄膜基体材料的选择[J]. 金刚石与磨料磨具工程, 2004(3): 50-51. FANG Lili.Selection of cvd diamond film substrates[J]. Diamond & Abrasives Engineering, 2004(3): 50-51. [6] 魏秋平, 余志明, 马莉, 等. 化学脱钴对硬质合金沉积金刚石薄膜的影响[J]. 中国有色金属学报, 2008, 18(6): 1070-1081. WEI Qiuping, YU Zhiming, MA Li, et al.Effects of chemical surface pretreatments on diamond coatings on cemented tungsten carbide substrate[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(6): 1070-1081. [7] 熊超, 李烈军, 苏东艺, 等. 预处理对金刚石薄膜质量及结合力的影响[J]. 表面技术, 2018, 47(1): 203-210. XIONG Chao, LI Liejun, SU Dongyi, et al.Effects of pretreatment on quality and adhesion of diamond films on cemented carbides[J]. Surface Technology, 2018, 47(1): 203-210. [8] SHEN X T, WANG X C, SUN F H, et al.Sandblasting pretreatment for deposition of diamond films on WC-Co hard metal substrates[J]. Diamond and Related Materials, 2017, 73: 7-14. [9] 李成明, 王建明, 徐重, 等. 准分子激光预处理对硬质合金表面沉积金刚石薄膜结合强度的影响[J]. 金属学报, 1996(9): 966-970. LI Chengming, WANG Jianming, XU Zhong, et al.Effect of excimer laser pretreatmenton diamond film deposited on hard alloy substrate[J]. Acta Metallurgica Sinica, 1996(9): 966-970. [10] ULLRAM S, HAUBNER R.Temperature pre-treatments of hardmetal substrates to reduce the cobalt content and improve diamond deposition[J]. Diamond and Related Materials, 2006, 15(4/8): 994-999. [11] TIAN Q Q, HUANG N, BING Y.Diamond/β-SiC film as adhesion-enhanced interlayer for top diamond coatings on cemented tungsten carbide substrate[J]. Journal of Materials Science & Technology, 2017, 33(10): 33-42. [12] SARANGI S K, CHATTOPADHYAY A, CHATTOPADHYAY A K.Effect of pretreatment, seeding and interlayer on nucleation and growth of HFCVD diamond films on cemented carbide tools[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26(3): 220-231. [13] XU Z Q, LEV L, LUKITSCH M, et al.Effects of surface pretreatments on the deposition of adherent diamond coatings on cemented tungsten carbide substrates[J]. Diamond and Related Materials, 2007, 16(3): 461-466. [14] 苗晋琦, 宋建华, 赵中琴, 等. 两种预处理对硬质合金金刚石涂层附着力的影响对比研究[J]. 金刚石与磨料磨具工程, 2003(4): 5-8. MIAO Jinqi, SONG Jianhua, ZHAO Zhongqin, et al.Study on a comparision of two kinds of pretreatment effects about the adhesion of the cemented carbide diamond coating cutters[J]. Diamond & Abrasives Engineering, 2003(4): 5-8. [15] 徐俊华. CVD金刚石涂层高钴硬质合金刀具的制备及其应用基础研究[D]. 南京; 南京航空航天大学, 2014. XU Junhua.Preparation and applied basic research of CVD diamond coated cemented carbide cutting tools with high cobalt content[D]. Nanjing; Nanjing University of Aeronautics and Astronautics, 2014. [16] 李成明, 王建明, 徐重, 等. 用热丝法在激光预处理的硬质合金表面沉积金刚石薄膜的研究[J]. 热加工工艺, 1996(1): 26-27. LI Chengming, WANG Jianming, XU Zhong, et al.Study of deposited films on hard alloy of laser pretreated on HFCVD[J]. Hot Working Technology, 1996(1): 26-27. [17] 夏鑫, 余寒, 花腾宇, 等. 硼掺杂梯度对硬质合金金刚石涂层的影响[J]. 金刚石与磨料磨具工程, 2022, 42(6): 676-684. XIA Xin, YU Han, HUA Tengyu, et al.Effect of boron doping gradient on cemented carbide diamond coatings[J]. Diamond & Abrasives Engineering, 2022, 42(6): 676-684. [18] WANG X C, SHEN X O, YAN G D, et al.Evaluation of boron-doped-microcrystalline/nanocrystalline diamond com- posite coatings in drilling of CFRP[J]. Surface & Coatings Technology, 2017, 330: 149-162. [19] 赵鹏, 左敦稳, 周春, 等. 后处理工艺对硼掺杂金刚石电极膜/基结合性能的影响[J]. 金刚石与磨料磨具工程, 2013, 33(3): 36-39. ZHAO Peng, ZUO Dunwen, ZHOU Chun, et al.Effect of post-treatment on adhesion stress of boron-doped diamond coated electrode[J]. Diamond & Abrasives Engineering, 2017, 330: 149-162. [20] WANG X C, WANG C C, HE W K, et al.Co evolutions for WC-Co with different Co contents during pretreatment and HFCVD diamond film growth processes[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3): 469-486. [21] 张好强, 庞思勤, 王西彬, 等. 不同晶粒度硬质合金刀具切削不锈钢的试验研究[J]. 稀有金属与硬质合金, 2016, 44(2): 76-80. ZHANG Haoqiang, PANG Siqin, WANG Xibin, et al.Experimental study cutting stainless steel with different grain size cemented carbide tools[J]. Rare Meatals and Cemented Carbides, 2016, 44(2): 76-80. [22] JIAN X G, CHEN M, SUN F H, et al. Study on the effects of substrate grain size on diamond thin films deposited on tungsten carbide substrates[J]. Key Engineering Materials, 2004, 274/275/276: 1137-1142. [23] 丁春生, 赵延军, 丁玉龙, 等. 不同晶粒度硬质合金的磨削性能研究[J]. 金刚石与磨料磨具工程, 2009(5): 67-70. DING Chunsheng, ZHAO Yanjun, DING Yulong, et al.Grinding performances on cemented carbides containing different sizes of grain[J]. Diamond & Abrasives Engineering, 2009(5): 67-70. [24] POLINI R, BRAVI F, MATTEI G, et al.Effect of WC grain growth inhibitors on the adhesion of chemical vapor deposition diamond films on WC-Co cemented carbide[J]. Diamond and Related Materials, 2002, 11(2): 242-248. [25] 姚成志, 孙方宏, 张志明, 等. 掺硼金刚石薄膜涂层刀具的制备及试验研究[J]. 上海交通大学学报, 2008, 42(5): 739-743. YAO Chengzhi, SUN Fanghong, ZHANG Zhiming, et al.Fabrication and cutting performance of boron doped diamond and coating inserts[J]. Journal of Shanghai Jiaotong University, 2008, 42(5): 739-743. [26] GEORGE M A, BURGER A, COLLINS W E, et al.Investigation of nucleation and growth processes of diamond films by atomic force microscopy[J]. Journal of Applied Physics, 1994, 76(7): 4099-4106. [27] 丛秋滋. 多晶二维X射线衍射[M]. 北京: 科学出版社, 1997. CONG Qiuzi.Polycrystalline Two-dimensional X-ray Diffraction[M]. Beijing: Science Press, 1997. [28] 徐锋, 左敦稳, 卢文壮, 等. 纳米金刚石薄膜的微结构和残余应力[J]. 金属学报, 2008(1): 74-78. XU Feng, ZUO Dunwen, LU Wenzhuang, et al.Microstructure and residual stress in nanocrystalline diamond film[J]. Acta Metallurgica Sinica, 2008(1): 74-78. [29] RAMASUBRAMANIAN K, ARUNACHALAM N, RAMACHANDRA RAO M S. Investigation on tribological behaviour of boron doped diamond coated cemented tungsten carbide for cutting tool applications[J]. Surface and Coatings Technology, 2017, 332: 332-340. [30] MORTET V, GREGORA I, TAYLOR A, et al.New perspectives for heavily boron-doped diamond Raman spectrum analysis[J]. Carbon, 2020, 168: 319-327. [31] WATANABE T, YOSHIOKA S, YAMAMOTO T, et al.The local structure in heavily boron-doped diamond and the effect this has on its electrochemical properties[J]. Carbon, 2018, 137: 333-342. [32] KALISH R, UZAN-SAGUY C, PHILOSOPH B, et al.Nitrogen doping of diamond by ion implantation[J]. Diamond & Related Materials, 1997, 6(2/3/4): 516-520. [33] BERNARD M, DENEUVILLE A, MURET P.Non- destructive determination of the boron concentration of heavily doped metallic diamond thin films from Raman spectroscopy[J]. Diamond and Related Materials, 2004, 13(2): 282-286. [34] BUIJNSTERS J G, SHANKAR P, FLEISCHER W, et al.CVD diamond deposition on steel using arc-plated chromium nitride interlayers[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 536-544. [35] LEI X, SHEN B, CHEN S, et al.Tribological behavior between micro- and nano-crystalline diamond films under dry sliding and water lubrication[J]. Tribology International, 2014, 69: 118-127. [36] LU M, WANG H, SONG X, et al.Effect of doping level on residual stress, coating-substrate adhesion and wear resistance of boron-doped diamond coated tools[J]. Journal of Manufacturing Processes, 2023, 88: 145-156. [37] 陈磊, 玄真武, 董长顺. 硬质合金表面粗糙度对金刚石涂层附着力影响的研究[J]. 超硬材料工程, 2009, 21(2): 8-11. CHEN Lei, XUAN Zhenwu, DONG Changshun, et al. Influence of surface roughness of hard alloy on adhesion of diamond coating[J]. Superhard Material Engineering, 2009, 21(2): 8-11. |
|
|
|