|
|
Electrochemical properties of copper doped honeycomb-layered Na3Ni2SbO6 cathode materials |
CHEN Lin, HUANG Qun, CHEN Cheng, FENG Yiming, WEI Weifeng |
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract Honeycomb layered Na3Ni2SbO6 cathode materials were doped with Cu instead of Ni to obtain Na3Ni2-xCuxSbO6 (x=0, 0.2, 0.4, 0.8) cathode materials. The morphology, structure and electrochemical properties of the materials were investigated by X-ray diffract to meter and scanning electron microscope. The results show that the cycling stability of Na3Ni2SbO6 cathode materials can be greatly enhanced by Cu substitution, i.e. the Cu-doped Na3Ni1.8Cu0.2SbO6 materials display a discharge capacity of 72.3 mA∙h/g after cycled for 100 cycles at 0.1C rate, while the discharge capacity of pristine Na3Ni2SbO6 cathode is only 39.5 mA∙h/g under the same situation. Through theoretical calculation and experimental analysis, it is found out that the introduction of Cu (Ⅱ) can effectively reduce the band gap of Na3Ni2SbO6 layered cathode materials and the diffusion energy barrier of Na+, and improve the electronic conductivity and ion diffusion performance of the cathode materials, and Cu substitution can also inhibit the adverse phase change of Na3Ni2SbO6 cathode materials during the cycle, thus improving the cycle stability and electrochemical performance of the layered cathode materials.
|
Received: 16 December 2022
Published: 23 March 2023
|
|
|
|
|
[1] YABUUCHI N, KUBOTA K, DAHBI M, et al.Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. [2] HUANG Q, LIU J, XU S, et al.Roles of coherent interfaces on electrochemical performance of sodium layered oxide cathodes[J]. Chemistry of Materials, 2018, 30(14): 4728-4737. [3] ZHAO F P, GONG Q F, TRAYNOR B, et al.Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries[J]. Nano Research, 2016, 9(10): 3162-3170. [4] KIM H, KIM H, DING Z, et al.Recent progress in electrode materials for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(19): 1600941. [5] YAN Y, YIN Y X, GUO Y G, et al.Effect of cations in ionic liquids on the electrochemical performance of lithium-sulfur batteries[J]. Science China Chemistry, 2014, 57(11): 1564-1569. [6] XIANG X D, ZHANG K, CHEN J.Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Advanced Materials, 2015, 27(36): 5343-5364. [7] HOSONO E, SAITO T, HOSHINO J, et al.High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode[J]. Journal of Power Sources, 2012, 217(1): 43-46. [8] CAO Y L, XIAO L F, WANG W, et al.Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life[J]. Advanced Materials, 2011, 23(28): 3155-3160. [9] HAN M H, GONZALO E, SINGH G, et al.A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries[J]. Energy & Environmental Science, 2014, 8(1): 12-81. [10] XIONG F Y, AN Q, XIA L, et al.Revealing the atomistic origin of the disorder-enhanced Na-storage performance in NaFePO4 battery cathode[J]. Nano Energy, 2019, 57: 608-615. [11] KABBOUR H, COILLOT D, COLMONT M, et al.α-Na3M2(PO4)3 (M=Ti,Fe): absolute cationic ordering in NASICON-type phases[J]. Journal of the American Chemical Society, 2011, 133(31): 11900-11903. [12] DENG W W, SHEN Y F, QIAN J F, et al.A perylene diimide crystal with high capacity and stable cyclability for Na-ion natteries[J]. ACS Applied Materials & Interfaces, 2015,7(38): 21095-21099. [13] YANG D Z, XU J, LIAO X Z, et al.Structure optimization of prussian blue analogue cathode materials for advanced sodium ion batteries[J]. Chemical Communications, 2014, 50(87): 13377-13380. [14] WESSELLS C D, PEDDADA S V, HUGGINS R A, et al.Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Letters, 2011, 11(12): 5421-5425. [15] KIM J, KIM Y, PARK S, et al.Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries[J]. Energy & Environmental Science, 2016, 9(4): 1264-1269. [16] DELMAS C, FOUASSIER C, HAGENMULLER P.Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(1): 81-85. [17] HAN M H, GONZALO E, CASAS-CABANAS M, et al.Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process[J]. Journal of Power Sources, 2014, 258: 266-271. [18] MORTEMARD de BOISSE B, CHENG J H, CARLIER D, et al. O3-NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: structural evolutions and redox mechanisms upon Na+(de) intercalation[J]. Journal of Materials Chemistry A, 2015, 3(20): 10976-10989. [19] DAI H, YANG C H, OU X, et al.Unravelling the electrochemical properties and thermal behavior of NaNi2/3Sb1/3O2 cathode for sodium-ion batteries by in situ X-ray diffraction investigation[J]. Electrochimica Acta, 2017, 257: 146-154. [20] YUAN D D, LIANG X M, WU L, et al.A honeycomb- layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries[J]. Advanced Materials, 2014, 26(36): 6301-6306. [21] WANG P F, YAO H R, YOU Y, et al.Understanding the structural evolution and Na+ kinetics in honeycomb-ordered O'3-Na3Ni2SbO6 cathodes[J]. Nano Research, 2018, 11(6): 3258-3271. [22] YOU Y, KIM S O, MANTHIRAM A.A honeycomb- layered oxide cathode for sodium-ion batteries with suppressed P3-O1 phase transition[J]. Advanced Energy Materials, 2017, 7(5): 1601698. [23] WANG P, GUO Y, DUAN H, et al.Honeycomb-ordered Na3Ni1.5M0.5BiO6 (M=Ni,Cu,Mg, Zn) as high-voltage layered cathodes for sodium-ion batteries[J]. ACS Energy Letters, 2017, 2(12): 2715-2722. [24] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [25] BLÖCHL B, TSINAS L. Automatic road following using fuzzy control[J]. Control Engineering Practice, 1994, 2(2): 305-311. [26] PERDEW P J, BURKE K, MATTHIAS B, et al.Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 18(77): 3865-3868. [27] HENKELMAN G, UBERUAGA B P, JONSSON H.A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22): 9901-9904. [28] HENKELMAN G, JONSSON H.Improved tangent estimate in the nudged elastic band method minimum energy paths and saddle points[J]. The Journal of Chemical Physics, 2000, 113(22): 9978-9985. [29] XIAO L, DING Z, HUANG Q, et al.Electronic-structure tuning of honeycomb layered oxide cathodes for superior performance[J]. Acta Materialia, 2020, 199: 34-41. [30] CHEN S, HAN E S, XU H, et al.P2-type Na0.67Ni0.33-xCuxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries[J]. Ionics, 2017, 23(11): 3057-3066. [31] LIU J, YIN L, WU L, et al.Quantification of honeycomb number-type stacking faults: application to Na3Ni2BiO6 cathodes for Na-ion batteries[J]. Inorganic Chemistry, 2016, 55(17): 8478-8492. [32] MA J, BO S H, WU L J, et al.Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2: honeycomb-ordered cathodes for Na-ion batteries[J]. Chemistry of Materials, 2015, 27(7): 2387-2399. [33] LIANG C P, KONG F T, LONGO R, et al.Site-dependent multicomponent doping strategy for Ni-rich LiNi1-2y- CoyMnyO2(y=1/12) cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(48): 25303-25313. |
|
|
|