|
|
Measurement of the sphericity and satellity of 3D printing metal powder by imaging particle size analysis——with argument on GB/T39251—2020 |
LIU Wenli, YANG Zhenghong, WANG Xinquan |
Insearch Technology Development Beijing Co., Ltd., Beijing 102208, China |
|
|
Abstract The particle size and shape characteristics of 3D printed spherical metal powder have a great influence on the properties of formed parts. Therefore, it is very important to explore appropriate particle size and shape parameters to control the quality of 3D printing spherical metal powder. Mixing the coarse and fine particle size of 3D printing metal powder in a certain proportion can effectively improve the product strength and quality on the surface. In fact, the traditional laser diffraction method is difficult to distinguish the multi particle groups of powder samples, while the image particle sizing analysis an easy solution. The sphericity and satellitized degree of 3D printing powder are the focus of particle shape research, but the sphericity is actually distinguished by three corresponding levels of shape including macroshape, mesoshape and microshape, which isdifficultto be completely characterized by a certain parameter. In this paper, the instrument (Occhio 500nano XY) and method of measuring particle size by imaging method are proposed for 3D printing spherical metal powder, and compared with the traditional laser diffraction method. It is proposed that Bluntness and Outgrowth index, two unique quantitative microshape parameters are the most suitable evaluation parameters for the sphericity of 3D printing metal powder which were described the meaning and indicated the discrimination. It is proved that Bluntness is one of the most sensitive sphericity characterization parameters, and Outgrowth index can reflect the satellitized degree of spherical particles quantitatively. However, the circularity recommended by
|
Received: 11 March 2022
Published: 15 November 2022
|
|
|
|
|
[1] 张亚娟. 3D打印用特种金属粉末的制备与使用性能表征[D].北京: 北京工业大学, 2019. ZHANG Yajuan.Preparation and performance characterization of special metal powder for 3D printing[D] Beijing: Beijing University of technology, 2019 [2] 杨正红. 卫星化粉末(颗粒)及其微观形态表征参数[R]. 贵阳:中国颗粒学会, 2013: 43-46. YANG Zhenghong.Satellitized powder (particles) and its micro morphological characterization parameters[R] Guiyang: China Granule Society, 2013: 43-46 [3] 刘晏军, 刘业, 谭彦妮. 间接3D打印制备Ti/HAp复合材料的结构与性能[J]. 粉末冶金材料科学与工程, 2021, 26(6): 515-524. LIU Yanjun, LIU Ye, TAN Yanni.Structure and properties of Ti/HAp composites prepared by indirect 3D printing[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(6): 515-524. [4] 崔波, 朱权利, 陈进, 等. 真空氮气雾化法制备3D打印Cu6AlNiSnInCe仿金粉末及表征[J]. 粉末冶金材料科学与工程, 2019, 24(1): 1-7. CUI Bo, ZHU Quanli, CHEN Jin, et al.Preparation and characterization of Cu6AlNiSnInCe imitation-gold powder by vacuum nitrogen gas atomization for 3D printing[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(1): 1-7. [5] 中国机械工业联合会. 增材制造金属粉末性能表征方法: GB/T 39251—2020[S]. 北京: 中国标准出版社, 2020. China Machinery Industry Federation. Additive manufacturing- methods to characterize performance of metal powders: GB/T 39251—2020[S]. Beijing: Standards Press of China, 2020. [6] 徐喜庆, 杨正红. 激光衍射法粒度分析的准确性及其与图像法分析结果的比较[J]. 仪器仪表与分析监测, 2020(4): 26-32. XU Xiqing, YANG Zhenghong.Accuracy of particle size analysis by laser diffraction method and its comparison with image method[J]. Instrumentation and Analysis Monitoring, 2020(4): 26-32. [7] 国家标准化管理委员会. 粒度分析结果的表述第6部分: 颗粒形状和形态的定性及定量表述: GB/T 15445.6—2014[S]. 北京: 中国标准出版社, 2015. Standardization Administration.Representation of results of particle size analysis-Part 6: Descriptive and quantitative representation of particle shape and morphology: GB/T 15445.6—2014[S]. Beijing: Standards Press of China, 2015. [8] BRITTAIN H G. Particle-Size Distribution, Part I: representations of particle shape, size, and distribution[J]. Pharmaceutical Technology, 2020, 25(12): 38-45 [9] 李叶, 殷喜平, 杨正红. 颗粒球形度的表征、分级及其应用[J]. 现代科学仪器, 2020(3): 61-69. LI Ye, YIN Xiping, YANG Zhenghong.Characterization, classification and application of particle sphericity[J]. Modern Scientific Instruments, 2020(3): 61-69. [10] 杨正红, 等. 静态图像粒度粒形分析方法对氧化铝颗粒的测定研究[J]. 现代科学仪器, 2019(5): 6-12. YANG Zhenghong, et al.Determination of alumina particles by static image particle size and shape analysis[J]. Modern Scientific Instruments, 2019(5): 6-12. [11] 杨正红, 欧阳亚非. 静态图像粒度分析中真空分散器原理和分散效果解析[J]. 现代科学仪器, 2019(1): 4-9. YANG Zhenghong, OUYANG Yafei.Analysis of vacuum disperser principle and dispersion effect in static image granularity analysis[J]. Modern Scientific Instruments, 2019(1): 4-9. [12] 杨正红. 欧奇奥粒度和形貌分析在化肥质量控制中的应用[J].化肥工业, 2019, 46(2): 6-11. YANG Zhenghong.Application of particle size and morphology analysis in chemical fertilizer quality control[J]. Chemical fertilizer industry, 2019, 46(2): 6-11. [13] 国家标准化管理委员会. 粒度分析图像分析法第1部分: 静态图像分析法: GB/T 21649.1—2008[S]. 北京: 中国标准出版社, 2008. Standardization Administration.Particle size analysis-Image analysis methods-Part 1: Static image analysis methods: GB/T 21649.1—2008[S]. Beijing: Standards Press of China, 2008. [14] PIRARD E, DISLAIRE G.Robustness of Planar Shape Descriptors of Particles[A]. In: Cheng Q; Bonham Carter G. GIS and Spatial Analysis, Vol 1and 2[C]. TORONTO: YORK UNIV, 2005: 1204-1209. [15] PIRARD E, DISLAIRE G.Sensitivity of particle size and shape parameters with respect to digitization[R]. Universite de Liege, GeMMe, Georesources and Geo-imaging Lab, Liege, BELGIUM; Occhio Instruments, Liege, BELGIUM: 2011: 56-59. [16] PIRARD E.Shape processing and analysis using the calypter[J]. Journal of Microscopy, 2011, 175(3): 214-221. [17] GAO C F, XIAO Z Y, ZOU H P.Characterization of spherical AlSi10Mg powder produced by double-nozzle gas atomization using different parameters[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 374-384. [18] 李燕, 金振奎, 金婷, 等. 岩浆岩砾石磨圆度地质意义的研究[J]. 沉积学报, 2014, 32(2): 189-197. LI Yan, JIN Zhenkui, JIN Ting, et al.Geological significance of magmatic gravel roundness[J]. Acta Sedimentologica Sinica, 2014, 32(2): 189-197. [19] POLAKOWSKI C, SOCHAN A, BIEGANOWSKI A, et al.Influence of the sand particle shape on particle size distribution measured by laser diffraction method[J]. International Agrophysics, 2014, 28(2): 195-200. [20] YORIKAWA H, MURAMATSU S.Logarithmic normal distribution of particle size from a luminescence line-shape analysis in porous silicon[J]. Applied Physics Letters, 1997, 71(5): 644-646. [21] LAM D, NAKAGAWA M.Packing of Particles (part 3), effect of particle size distribution shape on composite packing density in bimodal mixtures[J]. Journal of the Ceramic Society of Japan, 1994, 102(1182): 133-138. [22] NGUYEN F, GARAMBOIS S, JONGMANS D, et al.Image processing of 2D resistivity data for imaging faults[J]. Journal of Applied Geophysics, 2005, 57(4): 260-277. |
|
|
|