|
|
Adsorption performance of acid scarlet GR by γ-AlOOH prepared with hydrothermal method |
LÜ Fengcheng1, WANG Ding1, LI Zhonglin1, LI Yuping1, LI Yibing1, HE Guixiang2 |
1. School of Materials Science and Engineering, Guilin University of Technology, Guilin 541000, China; 2. School of Metallurgical and Resources Engineering, Guilin University of Technology (Nanning Campus), Nanning 530000, China |
|
|
Abstract Using aluminum sulfate octadecahydrate as the aluminum source and urea as the precipitant, the γ-AlOOH adsorbent was prepared by hydrothermal synthesis. The microstructure, morphology and adsorption performance of γ-AlOOH were analyzed and tested by X-ray diffractometer (XRD), scanning electron microscope (SEM) and N2 adsorption-desorption method. The effects of adsorption time, initial pH and initial mass concentration of acidic scarlet GR solution on the adsorption performance of acid scarlet GR by γ-AlOOH were studied as well. The results show that the γ-AlOOH adsorbent has a core-shell micron-flower hierarchical structure with high purity, a specific surface area of 205.07 m2/g, and an average pore size of 3.07 nm. When the initial mass concentration of the acid scarlet GR solution is 300 mg/L, the volume is 200 mL, the pH value is 2, and the temperature is 25 ℃, the adsorption amount of acid scarlet GR by 1 g γ-AlOOH reaches 470.65 mg, the removal rate is 78.44%. The adsorption kinetics of the adsorption process conforms to the pseudo-second-order kinetic model, and the adsorption thermodynamics conforms to the Langmuir thermodynamic model. After 8 cycles of adsorption, the adsorption amount of acid scarlet GR by 1 g γ-AlOOH regenerated adsorbent in 300 mg/L acid scarlet GR solution can still reach 422.57 mg, and the removal rate is 70.43%.
|
Received: 19 April 2022
Published: 15 November 2022
|
|
|
|
|
[1] 阮梁枫, 王靖, 沈青青. 染料废水处理技术研究[J]. 清洗世界, 2021, 37(12): 52-53. RUAN Liangfeng, WANG Jing, SHENG Qingqing.Dye wastewater treatment technology research[J]. Cleaning World, 2021, 37(12): 52-53. [2] 谢艳新, 刘海娟, 尚磊, 等. 染料废水处理最新研究进展[J]. 印染助剂, 2020, 37(7): 11-16. XIE Yanxin, LIU Haijuan, SHANG Lei, et al.The latest research progress of dye wastewater treatment[J]. Textile Auxiliaries, 2020, 37(7): 11-16. [3] 崔玉民, 殷榕灿. 染料废水处理方法研究进展[J]. 科技导报, 2021, 39(18): 79-87. CUI Yumin, YIN Rongcan.Research progress of dye wastewater treatment methods[J]. Science & Technology Review, 2021, 39(18): 79-87. [4] 董衍玲. 多孔材料吸附去除染料废水中有机染料的研究[D]. 哈尔滨: 哈尔滨师范大学, 2011. DONG Yanling.Removal of dye elements from colored effluents by porous material[D]. Harbin: Harbin Normal University, 2011. [5] 季洪海, 凌凤香, 王鹏, 等. 棒状γ-氧化铝/火山岩基多孔材料的制备及刚果红吸附性能初探[J]. 燃料化学学报, 2021, 49(7): 1049-1056. JI Honghai, LING Fengxiang, WANG Peng, et al.Preparation of rod-like γ-alumina/volcanic rock porous material and preliminary study on the adsorption property of Congo red[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 1049-1056. [6] 秦彬, 谷晋川, 殷萍, 等. 染料废水处理技术研究进展[J]. 化工环保, 2021, 41(1): 9-18. QIN Bin, GU Jinchuan, YIN Ping, et al.Research progresses on dye wastewater treatment technology[J]. Environmental Protection of Chemical Industry, 2021, 41(1): 9-18. [7] ZHANG L, JIAO X L, CHEN D R, et al.γ-AlOOH nanomaterials with regular shapes: hydrothermal fabrication and Cr2O72- adsorption[J]. European Journal of Inorganic Chemistry. 2011, 34: 5258-5264. [8] 孙菲, 肖庆, 刘旭隆, 等. 纳米Fe2O3粉末的表面吸附性能[J]. 粉末冶金材料科学与工程, 2014(1): 24-30. SUN Fei, XIAO Qing, LIU Xulong, et al.Water adsorptive property of nano-sized hematite[J]. Materials Science and Engineering of Powder Metallurgy, 2014(1): 24-30. [9] PENG G W, DING D X, XIAO F Z, et al.Adsorption of uranium ions from aqueous solution by amine-group functionalized magnetic Fe3O4 nanoparticle[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301(3): 781-788. [10] WANG T, XU Y F, SU Q Y, et al.Hierarchical porous nanosheet-assembled MgO microrods with high adsorption capacity[J]. Materials Letters, 2014, 116: 332-336. [11] LOZHKOMOEV A S, KAZANTSEV S O, GLAZKOVA E A, et al.Synthesis, characterization and properties of porous micro/ nanostructures obtained by oxidizing aluminum nanoparticles with water in the presence of glass fibers[J]. Materials Research Express, 2018, 5(11): 115011. [12] MIAO Y E, WANG R Y, CHEN D, et al.Electrospun self-standing membrane of hierarchical SiO2@gamma-AlOOH (boehmite) core/sheath fibers for water remediation[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5353-5359. [13] KAMARI M, SHAFIEE S, SALIMI F, et al.Comparison of modified boehmite nanoplatelets and nanowires for dye removal from aqueous solution[J]. Desalination and Water Treatment, 2019, 161: 304-314. [14] SAPTIAMA I, KANETI Y V, YULIARTO B, et al.Biomolecule-assisted synthesis of hierarchical multilayered boehmite and alumina nanosheets for enhanced molybdenum adsorption[J]. Chemistry-a European Journal, 2019, 25(18): 4843-4855. [15] VO T K, PARK H K, NAM C W, et al.Facile synthesis and characterization of gamma-AlOOH/PVA composite granules for Cr (VI) adsorption[J]. Journal of Industrial and Engineering Chemistry, 2018, 60: 485-492. [16] WANG F, YUAN X, WANG D W.Hydrothermal synthesis of hierarchical boehmite (gamma-AlOOH) hollow microspheres with highly active surface[J]. AIP Advances, 2021, 11(6): 065209. [17] FENG K Z, RONG D Q, REN W A, et al.Hierarchical flower-like gamma-AlOOH and gamma-Al2O3 microspheres: synthesis and adsorption properties[J]. Materials Express, 2015, 5(4): 371-375. [18] LI G C, SUN Y Y, LI X B, et al.Adsorption of Congo red from water with spindle-like boehmite: the role of lattice plane (020)[J]. RSC Advances, 2016, 6(14): 11855-11862. [19] MURUGAN A V, SAMUEL V, RAVI V.Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method[J]. Materials Letters, 2006, 60(4): 479-480. [20] YANG W Y, GAO F M, WEI G D, et al.Ostwald ripening growth of silicon nitride nanoplates[J]. Crystal Growth & Design, 2010, 10(1): 29-31. [21] CAI W Q, YU J G, CHENG B, et al.Synthesis of Boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment[J]. Journal of Physical Chemistry C, 2009, 113(33): 14739-14746. [22] WU X Y, WANG D B, HU Z S, et al.Synthesis of γ-AlOOH (γ-Al2O3) self-encapsulated and hollow architectures[J]. Material Chemistry and Physics, 2008, 109(2/3): 560-564. [23] BUTTERSACK C.Modeling of type IV and V sigmoidal adsorption isotherms[J]. Physical Chemistry Chemical Physics, 2019, 21(10): 5614-5626. [24] 杨中民, 王月平, 姚敬华, 等. γ-AlOOH自水溶液中对Eu(Ⅲ)离子及其配合物的吸附[J]. 云南化工, 2003, 30(3): 34-36, 73. YANG Zhongmin, WANG Yueping, YAO Jinghua, et al.Adsorption of Eu (Ⅲ) ion from γ-AlOOH aqueous solution[J]. Yunnan Chemical Technology, 2003, 30(3): 34-36, 73. [25] VOLLHARDT D, MELZER V.Phase transition in adsorption layers at the air-water interface: bridging to Langmuir monolayers[J]. Journal of Physical Chemistry B, 1997, 101(17): 3370-3375. [26] 郭春梅, 王志强, 黄晓东. 铁酸锌吸附水中酸性大红FG5N的研究[J]. 闽江学院学报, 2017, 38(2): 72-78. GUO Chunmei, WANG Zhiqiang, HUANG Xiaodong.Study on the adsorption of acid red FG5N from aqueous solutions by zinc ferrite[J]. Journal of Minjiang University, 2017, 38(2): 72-78. [27] 孙志勇, 商铁林, 王金东, 等. 四乙烯五胺接枝膨润土对酸性大红GR的吸附性能[J]. 化工进展, 2021, 40(5): 2873-2881. SUN Zhiyong, SHANG Tielin, WANG Jindong, et al.Adsorption properties of acid scarlet GR by tetraethylenepentamine grafted bentonite[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2873-2881. [28] 危唯, 孙新鹏, 常城城, 等. TiO2纳米管石墨烯凝胶吸附酸性大红热力学研究[J]. 广州化工, 2018, 46(11): 25-28. WEI Wei, SUN Xinpeng, CHANG Chengcheng, et al.Thermodynamic study on adsorption of acid scarleton graphene hydrogel with titanium nanotube[J]. Guangzhou Chemical Industry, 2018, 46(11): 25-28. [29] 李克斌, 张涛, 魏红, 等. 壳聚糖吸附酸性大红及Cu2+对吸附的增强作用[J]. 环境科学, 2009, 30(9): 2586-2591. LI Kebin, ZHANG Tao, WEI Hong, et al.Adsorption of acid red 3r on chitosan and its enhancement by Cu2+ co-sorption[J]. Chinese Journal of Environmental Science, 2009, 30(9): 2586-2591. [30] 韩双艳, 李北罡. Ca/CTS/FA复合材料对酸性大红的吸附研究[J]. 农业资源与环境学报, 2016, 35(6): 1153-1159. HAN Shuangyan, LI Beigang.Adsorption of acid scarlet 3R by Ca/CTS/FA composite from aqueous solution[J]. Journal of Agro-Environment Science, 2016, 35(6): 1153-1159. [31] 钟伟, 夏颖帆, 翟杭玲, 等. 共沉淀法制备稀土Ce掺杂的纳米ZnO及其光催化降解染料的性能[J]. 无机化学学报, 2020, 36(1): 40-52. ZHONG Wei, XIA Yingfan, ZHAI Hangling, et al.Preparation by co-precipitation metbod and pbotocatalytic performances on tbe degradation of dyes of Ce3+-doped Nano-ZnO[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(1): 40-52. |
|
|
|