|
|
Microstructure and thermal conductivity property of U3Si2 fuel pellets by vacuum sintering |
LU Yonghong, JIA Daikun, SU Danke, PAN Xiaoqiang, XIA Jibin, WANG Yifan, WANG Ting, ZHANG Xiang, WANG Zizhen, QIUShaoyu |
Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China,Chengdu 610213, China |
|
|
Abstract Using U3Si2 powder as raw material, U3Si2 fuel pellets were prepared by vacuum sintering method. The effect of sintering temperature on the density of U3Si2 pellets was studied. The uranium concentration and impurity content of U3Si2 fuel pellets were also revealed. The microstructure and thermal conductivity property of U3Si2 fuel pellets were then characterized. The results show that the density of U3Si2 fuel pellets first increases and then decreases with the increase of sintering temperature. The U3Si2 fuel pellets sintered at 1 550 ℃ for 2 h possesses the highest relative density, which is about 96.7%. And the uranium mass concentration of the pellets is 10.81 g/cm3, significantly higher than the uranium mass concentration of the active UO2 pellets. The U3Si2 fuel pellet is composed of U3Si2, USi and UO2 phases. The thermal diffusivity of the pellet increases gradually with the increase of temperature. The thermal diffusivity at 500 ℃ is 3.95 mm2/s, which is about two times higher than that of the UO2 pellet.
|
Received: 05 May 2022
Published: 14 September 2022
|
|
|
|
|
[1] 徐銤. 加快核电发展, 有效降低碳排放[J]. 科技导报, 2017, 35(13): 1-1. XU Mi.Accelerate the development of nuclear power and effectively reduce carbon emissions[J]. Science & Technology Review, 2017, 35(13): 3-3. [2] 唐传宝, 柴晓明. 实现“双碳”目标, 核能不可或缺[J]. 中国机关后勤, 2022(1): 72-74. TANG Chuanbao, CHAI Xiaoming.To achieve the carbon peaking and carbon neutrality goal, nuclear energy is indispensable[J]. Chinese Government General Services, 2022(1): 72-74. [3] 莫华均, 张伟, 吴璐, 等. 耐事故UO2 基复合燃料芯块的研发进展[J]. 核动力工程, 2020, 41(2): 36-39. MO Huajun, ZHANG Wei, WU Lu, et al.Progress of accident-tolerant UO2-based composite fuel pellets[J]. Nuclear Power Engineering, 2020, 41(2): 36-39. [4] 周军, 邱绍宇, 杜沛南, 等. 耐事故燃料包壳用FeCrAl不锈钢的研究进展[J]. 材料导报, 2017, 31(S2): 47-51. ZHOU Jun, QIU Shaoyu, DU Peinan, et al.Research progress in the FeCrAl alloys for accident tolerant fuel cladding[J]. Materials Reports, 2017, 31(S2): 47-51. [5] JASON M H, PAUL A L, RITA EH.Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation[J]. Journal of Nuclear Materials, 2015, 466:728-738. [6] WHITE J T, NELSON A T, DUNWOODY J T, et al.Thermophysical properties of U3Si2 to 1 773 K[J]. Journal of Nuclear Materials , 2015, 464: 275-280. [7] AFIQA M, YUJI O, HIROAKI M, et al.Thermal and mechanical properties of polycrystalline U3Si2 synthesized by spark plasmasintering[J]. Journal of Nuclear Science and Technology, 2018, 51(10): 12-22. [8] DENISE A L, ANNA B, SIMON M, et al.Spark plasma sintering and microstructural analysis of pure and Modoped U3Si2 pellets[J]. Journal of Nuclear Materials, 2017, 496: 234-241. [9] RITA E H, JASON M H, HE L F.Evaluation of U3Si2 fuel pellets sintered in an argon vs. vacuum environment[J]. Advances in Ceramics for Environmental, Functional, Structural, and Energy Applications: Ceramic Transactions, 2018, 265: 21-26. [10] 张翔, 刘桂良, 刘云明, 等. U3Si2燃料芯块的制备与显微组织研究[J].核动力工程, 2019, 40(1): 56-59. ZHANG Xiang, LIU Guiliang, LIU Yunming, et al.Study on fabrication and microstructural analysis of U3Si2fuel pellets[J]. Nuclear Power Engineering, 2019, 40(1): 56-59. [11] ANTONIO D J, SHRESEHA K, HAPP J M, et al.Thermal and transport properties of U3Si2[J]. Journal of Nuclear Materials, 2018, 508: 154-158. [12] NELSON A T, MIGDISOV A, WOOD E S, et al.U3Si2 behavior in H2O environments: Part II pressurized water withcontrolled redox chemistry[J]. Journal of Nuclear Materials, 2018, 500: 81-91. [13] RITA E H, KEVIN R T, FABIOLA C, et al.Grain size and phase purity characterization of U3Si2 fuelpellets[J]. Journal of Nuclear Materials, 2018, 512: 199-213. [14] GUO X F, WHITE J T, NELSON A T, et al.Enthalpy of formation of U3Si2: a high-temperature drop calorimetry study[J]. Journal of Nuclear Materials, 2018, 507: 44-49. [15] YAO T K, GONG B W, HE L F, et al.In-situ TEM study of the ion irradiation behavior of U3Si2 and U3Si5[J]. Journal of Nuclear Materials, 2018, 511: 56-63. [16] FABIOLA C, JASON M H.Post-irradiation examinations of low burnup U3Si2 fuel for light water reactor applications[J]. Journal of Nuclear Materials, 2019, 518: 62-79. [17] 孙明辉, 徐越, 王雪婷, 等. (Sr1-3x/2Lax)TiO3(x=0.2~0.5)陶瓷的显微组织结构及微波介电性能研究[J]. 齐鲁工业大学学报, 2018, 32(6): 7-12. SUN Minghui, XU Yue, WANG Xueting, et al.Crystal microstructure and microwave dielectric properties of(Sr1-3x/2Lax)TiO3(x=0.2~0.5) ceramics[J]. Journal of QILU University of Technology, 2018, 32(6): 7-12. [18] 高旭芳, 丘泰. Bi掺杂对Ba6-3xLa8+2x(Ti0.95Zr0.05)18O54(x=2/3)陶瓷的烧结性能和介电性能的影响[J]. 中国有色金属学报, 2010, 20(3): 529-533. GAO Xufang, QIU Tai.Effects of Bi doping on sintering and dielectric characteristics of Ba6-3xLa8+2x(Ti0.95Zr0.05)18O54(x=2/3) ceramics[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(3): 529-533. [19] MUTSUMI H.Thermal diffusivity of UO2-Gd2O3 pellets[J]. Journal of Nuclear Materials, 1990, 173: 247-254. |
|
|
|