|
|
Effects of confined hydrogen densification treatment on the density and mechanical properties of powder metallurgy Ti-6Al-4V alloy |
DUAN Zhongyuan1, CHEN Zoujun1, ZHU Xianzhi1, LIU Bin1, LIU Yong1, LIANG Xiaopeng2, ZHOU Chengshang1 |
1. Powder Metallurgy Research Institute, Central South University, Changsha 410083, China; 2. School of Materials Science and Engineering, Central South University, Changsha 410083, China |
|
|
Abstract Titanium hydride powder and 6Al-4V pre-alloyed powder were used as raw materials to prepare Ti-6Al-4V alloy by vacuum sintering. Then confined hydrogen densification treatment in a high-purity hydrogen atmosphere was carried out, and finally vacuum annealing was performed to remove the residual hydrogen in the alloy. The microstructure morphology of the alloy was observed by an optical microscope. The density and tensile properties of the alloy were determine, and the fatigue performance testing was tested using the MTS-810 hydraulic servo fatigue testing machine . The results show that the confined hydrogen densification treatment can reduce the residual porosity of the sintered Ti-6Al-4V alloy from 2.5% to 1.3%, and the relative density can reach (98.7±0.3)%. After confined hydrogen densification treatment, the tensile strength of the alloy increases from (936±18) MPa to (959±10) MPa, and the elongation increases from (6.7±1.6)% to (12±1.1)%. At the same time, the fatigue performance is improved, and the cycle times reach 4670 cycles under the condition of 0.5% cyclic strain amplitude.
|
Received: 30 November 2021
Published: 07 May 2022
|
|
|
|
|
[1] 赵瑶, 贺跃辉, 江垚. 粉末冶金Ti6Al4V合金的研制进展[J]. 粉末冶金材料科学与工程, 2008, 13(2): 70-78. ZHAO Yao, HE Yuehui, JIANG Yao.Development of powder metallurgy Ti6Al4V alloy[J]. Powder Metallurgy Materials Science and Engineering, 2008, 13(2): 70-78. [2] 张拓阳, 刘咏, 刘彬, 等. 细晶Ti-6Al-4V合金的超塑性变形行为与组织演变[J]. 粉末冶金材料科学与工程, 2014, 19(2): 184-190. ZHANG Tuoyang, LIU Yong, LIU Bin, et al.Superplastic deformation behavior and microstructure evolution of fine-grained Ti-6Al-4V alloy[J]. Powder Metallurgy Materials Science and Engineering, 2014, 19(2): 184-190. [3] 王亮, 史鸿培. 高性能钛合金粉末冶金技术研究[J]. 宇航材料工艺, 2003, 33(3): 42-44. WANG Liang, SHI Hongpei.Research on high performance titanium alloy powder metallurgy technology[J]. Aerospace Materials Technology, 2003, 33(3): 42-44. [4] 金和喜, 魏克湘, 李建明, 等. 航空用钛合金研究进展[J]. 中国有色金属学报, 2015, 25(2): 280-292. JIN Hexi, WEI Kexiang, LI Jianming, et al.Research progress of titanium alloys for aviation[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2): 280-292. [5] BOYER R R.An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering A, 1996, 213(1): 103-114. [6] FROES F H, EYLON D.Powder Metallurgy of Titanium Alloys[M]. US: Melallurgical of AIME, 1980. [7] FANG Z Z, PARAMORE J D, SUN P, et al.Powder metallurgy of titanium-past, present, and future[J]. International Materials Reviews, 2017, 63(7): 407-459. [8] 黄伯云, 韦伟峰, 李松林, 等. 现代粉末冶金材料与技术进展[J]. 中国有色金属学报, 2019, 29(9): 1917-1933. HUANG Boyun, WEI Weifeng, LI Songlin, et al.Progress in modern powder metallurgy materials and technology[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 1917-1933. [9] 冯新, 马英杰, 李建崇, 等. 铸造、锻造和粉末冶金TC4钛合金损伤容限行为对比研究[J]. 精密成形工程, 2018, 10(3): 46-54. FENG Xin, MA Yingjie, LI Jianchong, et al.Comparative study on damage tolerance behavior of casting, forging and powder metallurgy TC4 titanium alloy[J]. Precision Forming Engineering, 2018, 10(3): 46-54. [10] 汤慧萍, 黄伯云, 刘咏, 等. 粉末冶金钛合金致密化研究的进展[J]. 稀有金属材料与工程, 2003, 32(9): 677-680. TANG Huiping, HUANG Boyun, LIU Yong, et al.Research progress in the densification of powder metallurgy titanium alloys[J]. Rare Metal Materials and Engineering, 2003, 32(9): 677-680. [11] 阴中炜, 孙彦波, 张绪虎, 等. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 24-33. YIN Zhongwei, SUN Yanbo, ZHANG Xuhu, et al.Hot isostatic pressing near-net forming technology and development status of powder titanium alloy[J]. Materials Review, 2019, 33(7): 24-33. [12] CAO F, CHANDRAN K R.Fatigue performance of powder metallurgy (PM) Ti-6Al-4V alloy: a critical analysis of current fatigue data and metallurgical approaches for improving fatigue strength[J]. Journal of the Minerals Metals and Materials Society, 2016, 68(3): 1-12. [13] 张殿喜, 周士芸, 张在玉, 等. HIP技术在改善铸件致密化方面的应用[J]. 粉末冶金工业, 2015, 25(1): 46-48. ZHANG Dianxi, ZHOU Shiyun, ZHANG Zaiyu, et al.Application of HIP technology in improving the densification of castings[J]. Powder Metallurgy Industry, 2015, 25(1): 46-48. [14] 刘慧渊, 何如松, 周武平, 等. 热等静压技术的发展与应用[J]. 新材料产业, 2010, 11(11): 12-12. LIU Huiyuan, HE Rusong, ZHOU Wuping, et al.Development and application of hot isostatic pressing technology[J]. New Material Industry, 2010, 11(11): 12-12. [15] SAN-MARTIN A S, MANCHESTER F D. The H-Ti (Hydrogen- Titanium) system[J]. Bulletin of Alloy Phase Diagrams, 1987, 8(1): 30-42. [16] SENKOV O N, CHAKOUMAKOS B C, JONAS J J, et al.Effect of temperature and hydrogen concentration on the lattice parameter of beta titanium[J]. Materials Research Bulletin, 2001, 36(7/8): 1431-1440. [17] 韩明臣. 钛合金的热氢处理[J]. 宇航材料工艺, 1999, 29(1): 23-27, 50. HAN Mingchen.Thermal hydrogen treatment of titanium alloy[J]. Aerospace Materials Technology, 1999, 29(1): 23-27, 50. [18] SENKOV O N, FROES F H.Thermohydrogen processing of titanium alloys[J]. International Journal of Hydrogen Energy, 1999, 24(6): 565-576. [19] ELIEZER D, ELIAZ N, SENKOV O N, et al.Positive effects of hydrogen in metals[J]. Materials Science Engineering A, 2000, 280(1): 220-224. [20] 侯红亮, 李志强, 王亚军, 等. 钛合金热氢处理技术及其应用前景[J]. 中国有色金属学报, 2003, 13(3): 533-549. HOU Hongliang, LI Zhiqiang, WANG Yajun, et al.Titanium alloy thermal hydrogen treatment technology and its application prospects[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(3): 533-549. [21] 张鹏省, 赵永庆, 毛小南, 等. 热氢处理对Ti600钛合金组织和性能的影响[J]. 中国有色金属学报, 2010, 20(z1): 118-122. ZHANG Pengsheng, ZHAO Yongqing, MAO Xiaonan, et al.The effect of thermal hydrogen treatment on the structure and properties of Ti600 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(z1): 118-122. [22] 黄树晖, 宗影影, 单德彬. Ti6Al4V合金热氢处理组织演变研究[J]. 材料科学与工艺, 2013, 21(4): 7-11. HUANG Shuhui, ZONG Yingying, SHAN Debin.Research on microstructure evolution of Ti6Al4V alloy thermal hydrogen treatment[J]. Materials Science and Technology, 2013, 21(4): 7-11. [23] ZHOU C S, LIU Y, SUN P, et al. Method for promoting densification of metal body by utilizing metal expansion induced by hydrogen absorption: 0023625 A1[P].2021-01-28. [24] ZHOU C S, LIN F R, SUN P, et al.A novel method for densification of titanium using hydrogenation-induced expansion under constrained conditions[J]. Scripta Materialia, 2022, 210: 114432. [25] 李钊, 周晓军, 杨辰龙, 等. 曲面变厚度编织CFRP微观形态与孔隙特征分析[J]. 中南大学学报(自然科学版), 2015, 46(3): 829-834. LI Zhao, ZHOU Xiaojun, YANG Chenlong, et al.Analysis of microscopic morphology and pore characteristics of CFRP braided with variable thickness on curved surfaces[J]. Journal of Central South University (Natural Science Edition), 2015, 46(3): 829-834. [26] ZHAO J W, DING H, ZHAO W J, et al.Effects of hydrogen on the hot deformation behaviour of Ti-6Al-4V alloy: experimental and constitutive model studies[J]. Journal of Alloys and Compounds, 2013, 574(Complete): 407-414. [27] LI X F, CHEN X, LI B Y, et al.Grain refinement mechanism of Ti-55 titanium alloy by hydrogenation and dehydrogenation treatment[J]. Materials Characterization, 2019, 157: 109919. [28] FROES F, SENKOV O, QAZI J.Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing[J]. International Materials Reviews, 2004, 49(3/4): 227-245. [29] 赵永庆, 曹兴民, 奚正平. 热氢处理对两相钛合金及β钛合金加工态组织的影响[J]. 稀有金属材料与工程, 2007, 36(7): 1145-1148. ZHAO Yongqing, CAO Xingmin, XI Zhengping.The effect of thermal hydrogen treatment on the processed microstructure of two-phase titanium alloy and β-titanium alloy[J]. Rare Metal Materials and Engineering, 2007, 36(7): 1145-1148. [30] INTERNATIONAL A.ASTM standard B348/B348M-21 standard specification for titanium and titanium alloy bars and billets[S]. West Conshohocken, PA: ASTM International, 2021. [31] 薛松海, 韩鹏江, 冬韩, 等. 热处理对TC18粉末合金微观组织及力学性能影响[J]. 钛工业进展, 2021, 38(4): 16-22. XUE Songhai, HAN Pengjiang, DONG Han, et al.Effect of heat treatment on microstructure and mechanical properties of TC18 powder alloy[J]. Progress in Titanium Industry, 2021, 38(4): 16-22. [32] CAO F, CHANDRAN K S R, KUMAR P. New approach to achieve high strength powder metallurgy Ti-6Al-4V alloy through accelerated sintering at β-transus temperature and hydrogenation-dehydrogenation treatment[J]. Scripta Materialia, 2017, 130: 22-26. [33] YANG F, SUN X, GUAN H.Low cycle fatigue behavior of k40s cobalt-base superalloy at elevated temperature II. fatigue fractography[J]. Acta Metallrugica Sinica, 2002, 38(10): 1053-1056. [34] CHANDRAN K S R, CHANG P, CASHMAN G T. Competing failure modes and complex S-N curves in fatigue of structural materials[J]. International Journal of Fatigue, 2010, 32(3): 482-491. [35] 张仕朝, 赵嘉祺, 张建国. ZTC4(Ti-6Al-4V)铸造钛合金的室温低周疲劳行为[J]. 理化检验, 2013, 49(3): 144-147. ZHANG Shichao, ZHAO Jiaqi, ZHANG Jianguo.Room temperature low-cycle fatigue behavior of ZTC4(Ti-6Al-4V) cast titanium alloy[J]. Physical Testing and Chemical Analysis, 2013, 49(3): 144-147. |
|
|
|