|
|
Microstructure and mechanical properties of powder hot extruded 7075 aluminium alloy |
JING Cuiru, ZHANG Jiantao, WEN Liping, XIAO Zhiyu |
National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China |
|
|
Abstract 7075 aluminum alloy bar was prepared by powder hot extrusion method. The microstructures of the alloy bar were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). In addition, the tensile properties of the samples were also tested. The influences of the extrusion ratio on the microstructure and mechanical properties of the bar were investigated, and the strengthening mechanism was calculated in theory. The results show that a large number of second phase MgZn2 precipitates are desolventized and precipitated during hot extrusion at 500 ℃ with extrusion ratios of 9, 16, 25, and 36. With increasing extrusion ratio, the metallurgical bonding between the powder particles becames more sufficient, and the tensile strength and elongation of the alloy increase continuously. A high tensile strength of 492 MPa with an elongation of 27.6% is obtained at an extrusion ratio of 36. The fracture mode is a ductile-brittle-bonding fracture. The strengthening mechanism is the combined action of fine-grain strengthening, dislocation strengthening, second phase strengthening and solution strengthening.
|
Received: 06 November 2021
Published: 07 May 2022
|
|
|
|
|
[1] 邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29(9): 2115-2141. DENG Yunlai, ZHANG Xinming.Development of aluminum and aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2115-2141. [2] DAS T, KARUNANITHI R.Deformation, decomposition and hardening behavior of nano Al7075 alloy prepared by mechanical milling and hot pressing[J]. Advanced Powder Technology, 2016, 27(4): 1874-1877. [3] LU T W, CHEN W P, LI B, et al.Influence mechanisms of Zr and Fe particle additions on the microstructure and mechanical behavior of squeeze-cast 7075Al hybrid composites[J]. Journal of Alloys and Compounds, 2019, 798: 587-596. [4] ROGAL, DUTKIEWICZ J, ATKINSON H V, et al.Characterization of semi-solid processing of aluminum alloy 7075 with Sc and Zr additions[J]. Materials Science & Engineering A, 2013, 580(1/2): 362-373. [5] 袁松阳, 张亮, 吴国华, 等. 7000系铝合金及其复合材料挤压铸造研究进展[J]. 特种铸造及有色合金, 2017, 37(12): 1304-1309. YUAN Songyang, ZHANG Liang, WU Guohua, et al.Research progress in squeeze casting 7000 series aluminum alloys and their composites[J]. Special Casting & Nonferrous Alloys, 2017, 37(12): 1304-1309. [6] 苗艳伟, 李史星, 杜俊莉. 7075铝合金扁锭铸造缺陷研究[J].有色金属加工, 2018, 47(1): 17-21. MIAO Yanwei, LI Shixing, DU Junli.Study on casting defects of 7075 aluminum alloy flat ingot[J]. Nonferrous Metals Processing, 2018, 47(1): 17-21. [7] LEE S H, AHN B.Effect of compaction pressure and sintering temperature on the liquid phase sintering behavior of Al-Cu-Zn alloy[J]. Archives of Metallurgy and Materials, 2015, 60(2): 1485-1489. [8] REN J, WANG R C, PENG C Q, et al.Multistage aging treatment influenced precipitate characteristics improve mechanical and corrosion properties in powder hot-extruded 7055 Al alloy[J]. Materials Characterization, 2020, 170: 110683. [9] 游江, 刘允中, 顾才鑫, 等. 粉末热挤压SiCp/2024铝基复合材料的显微组织和力学性能[J]. 粉末冶金材料科学与工程, 2014, 19(1): 147-153. YOU Jiang, LIU Yunzhong, GU Caixin, et al.Microstructures and mechanical properties of SiCp/2024 aluminum matrix composite prepared by powder hot extrusion[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(1): 147-153. [10] REN J, WANG R C, PENG C Q, et al.Ultra-high strength Al-Zn-Mg-Cu alloys with high zinc content prepared via powder hot extrusion[J]. Micron, 2021, 144: 103015. [11] 王少卿. 粉末热挤压Al-Zn-Mg-Cu合金的制备工艺及组织性能研究[D]. 济南: 山东大学, 2010. WANG Shaoqing.Investigation on fabrication technology, microstructure and mechanical properties of powder hot extruded Al-Zn-Mg-Cu alloy[D]. Jinan: Shandong University, 2010. [12] 廖结莹. 快速凝固7075铝合金挤压材的微观组织与力学性能及耐蚀性能研究[D]. 广州: 华南理工大学, 2019. LIAO Jieying.Research on mechanical property and corrosion properties of rapidly solidified 7075 aluminum alloy by hot extrusion[D]. Guangzhou: South China University of Technology, 2019. [13] PU B W, LIN X B, LI B W, et al.Effect of SiC nanoparticles on the precipitation behavior and mechanical properties of 7075Al alloy[J]. Journal of Materials Science, 2020, 55(14): 6145-6160. [14] LENG J F, DONG Y F, REN B H, et al.Effects of graphene nanoplates on the mechanical behavior and strengthening mechanism of 7075Al alloy[J]. Materials: Basel, 2020, 13(24): 5808. [15] SHAERI M H, SHAERI M, EBRAHIMI M, et al.Effect of ECAP temperature on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy[J]. Progress in Natural Science: Materials International, 2016, 26(2): 182-191. [16] PUGA H, CARNEIRO V H, BARBOSA J, et al.Effect of grain and secondary phase morphologies in the mechanical and damping behavior of Al7075 alloys[J]. Metals and Materials International, 2016, 22(5): 863-871. [17] ADEYEMI D I, BOLAJI A, MOSOBALAJE O A, et al.Effect of heat treatment on some mechanical properties of 7075 aluminium alloy[J]. Materials Research, 2013, 16(1): 190-194. [18] KIM H, HA H, LEE J, et al.Outstanding mechanical properties of ultrafine-grained Al7075 alloys by high-pressure torsion[J]. Materials Science and Engineering A, 2021, 810: 141020. [19] DAS P, JAYAGANTHAN R, SINGH I V.Tensile and impact-toughness behaviour of cryorolled Al 7075 alloy[J]. Materials & Design, 2011, 32(3): 1298-1305. [20] 徐振宇, 胡道春. 6082铝合金热变形过程中的动态再结晶行为[J]. 中国有色金属学报, 2020, 30(6): 1230-1237. XU Zhenyu, HU Daochun.Dynamic recrystallization behavior of 6082 aluminum alloy during hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(6):1230-1237. [21] 薛杰, 王有为, 张志豪, 等. 挤压温度对Al-Zn-Mg-Cu合金动态再结晶、时效组织和力学性能的影响[J]. 中国有色金属学报, 2017, 27(11): 2204-2211. XUE Jie, WANG Youwei, ZHANG Zhihao, et al.Effects of extrusion temperature on dynamic recrystallization, aging microstructure and mechanical properties of Al-Zn-Mg-Cu alloy[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(11): 2204-2211. [22] ZENJI H, TAKAYOSHI F, MINORU N, et al.Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties[J]. Metallurgical and Materials Transactions A, 2000, 31(3): 691-701. [23] REIHANIAN M, EBRAHIMI R, TSUJI N, et al.Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing (ECAP)[J]. Materials Science & Engineering A, 2007, 473(1): 189-194. [24] CHINH N Q, GUBICZA J, LANGDON T G.Characteristics of face-centered cubic metals processed by equal-channel angular pressing[J]. Journal of Materials Science, 2007, 42(5): 1594-1605. [25] GUBICZA J, CHINH N Q.Microstructure of ultrafine-grained FCC metals produced by severe plastic deformation[J]. Current Applied Physics, 2005, 6(2): 194-199. [26] BRANDSTETTER S, DERLET P M, VANPETEGEM S, et al.Williamson-Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations[J]. Acta Materialia, 2007, 56(2): 165-176. [27] SZAJEWSKI A, CRONE C, KNAP J.Analytic model for the Orowan dislocation-precipitate bypass mechanism[J]. Materialia, 2020, 11: 100671. [28] SHAREI M H, SALEHI M T, SEYYEDEIN S H, et al.Characterization of microstructure and deformation texture during equal channel angular pressing of Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2013, 576: 350-357. [29] ZANDER J, SANDSTROM R, VITOS L.Modelling mechanical properties for non-hard enable aluminium alloys[J]. Computational Materials Science, 2007, 41(1): 86-95. |
|
|
|