|
|
Effects of sintering aids Al2O3 and Y2O3 on the lithium ion conductivity of solid lithium ion electrolyte LLZO |
LI Jian1,2, JIANG Yixiong1, ZHOU Hongming1,2 |
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China; 2. Zhengyuan Institute for Energy Storage Materials and Devices, Changsha 410083, China |
|
|
Abstract The garnet-type ceramic electrolyte Li7La3Zr2O12 (LLZO) with composition of xAl2O3-Li7La3Zr2O12 (x=0-0.4) and xY2O3-Li7La3Zr2O12 (x=0, 0.1, 0.2, 0.3 and0.4) were synthesized by adding Al2O3 and Y2O3 as sintering aids and using Li2CO3, La2O3 and ZrO2 as raw materials. The effects of the contents of sintering aids Al2O3 and Y2O3 on the lithium ion conductivity of solid lithium ion electrolyte LLZO were studied. The results reveal that two kinds of sintering aids both can stabilize the cubic phase of garnet structure LLZO after sintered at 1 500 ℃ for 15 h. The LaAlO3 impurity phase is produced when Al2O3 is over added. The Li2ZrO3 and YO1.458 impurity phases are produced when Y2O3 is over added. Among these samples,0.2Y2O3-LLZO can stabilize the cubic phase from 1 100 ℃ to 1 200 ℃ and do not decompose when sintering at 1 150 ℃ for 27 h。The density of LLZO and the conductivity of lithium ion increase first and then decrease with increasing the content of sintering aids. The optimum additions of Al2O3 and Y2O3 are 0.2 and 0.3, respectively. The density and ionic conductivity of 0.2Al2O3-LLZO are 94% and 1.78×10-4 S/cm, respectively. The density and ionic conductivity of 0.3Y2O3-Li7La3Zr2O12 are 96% and 5.23×10-4 S/cm, respectively.
|
Received: 24 April 2017
Published: 12 July 2019
|
|
|
|
|
[1] SCROSATI B, GARCHE J.Lithium batteries: Status, prospects and future[J]. J Power Sources, 2010, 195(9): 2419-2430. [2] NITTA N, WU F, LEE J T, et al.Li-ion battery materials: Present and future[J]. Mater Today, 2015, 18(5): 252-264. [3] FERGUS J W.Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. J Power Sources, 2010, 195(15): 4554-4569. [4] TAKADA K, TANSHO M, YANASE I, et al.Lithium ion conduction in LiTi2(PO4)3[J]. Solid State Ion, 2001, 139(3/4): 241-247. [5] WANG G X, BRADHURST D H, DOU S X, et al.LiTi2(PO4)3, with NASICON-type structure as lithium-storage materials[J]. J Power Sources, 2003, 124(1): 231-236. [6] AKITOSHI H, TAKAMASA O, FUMINORI M, et al.All-solid-state Li/S batteries with highly conductive glass- ceramic electrolytes[J]. Electrochem Commun, 2003, 5(1): 701-705. [7] NAGAO M, HAYASHI A, TATSUMISAGO M.Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5, solid electrolyte[J]. Electrochim Acta, 2011, 56(17): 6055-6059. [8] MASATOMO Y, MITSURU I, YOSHIYUKI I A, et al.Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3[J]. J Am Chem Soc, 2005, 127(10): 3491-3495. [9] INAGUMA Y, KATSUMATA T, ITOH M, et al.Crystal structure of a lithium ion-conducting perovskite La2/3-xLi3xTiO3, (x =0.05)[J]. J Solid State Chem, 2002, 166(1): 67-72. [10] THANGADURAI V, WEPPNER W.Recent progress in solid oxide and lithium ion conducting electrolytes research[J]. Ionics, 2006, 12(1): 81-92. [11] RANGASAMY E, WOLFENSTINE J, ALLEN J, et al.The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7-xLa3-xAxZr2O12, garnet-based ceramic electrolyte[J]. J Power Sources, 2013, 230(230): 261-266. [12] CUSSEN E J.The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors[J]. Chem Commun, 2005, 37(15): 412-413. [13] MURUGAN R, THANGADURAI V, WEPPNER W.Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Chem Int Ed, 2007, 46(41): 7778-7781. [14] AWAKA J, KIJIMA N, HAYAKAWA H, et al.Chem inform abstract: Synthesis and structure analysis of tetragonal Li7La3Zr2O12with the garnet-related type structure[J]. J Solid State Chem, 2009, 182(8): 2046-2052. [15] KOTOBUKI M, KANAMURA K, SATO Y, et al.Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte[J]. J Power Sources, 2011, 196(18): 7750-7754. [16] BUSCHMANN H, BERENDTS S, MOGWITZ B, et al.Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7-xLa3Zr2-xTaxO12 with garnet-type structure[J]. J Power Sources, 2012, 206: 236-244. [17] OHTA S, KOBAYASHI T, ASAOKA T.High lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr2-x,Nbx)O12 (x=0-2)[J]. J Power Sources, 2011, 196(6): 3342-3345. [18] CAO Z-Z, REN Wei, LIU J-R.Microstructure and ionic conductivity of Sb-doped Li7La3Zr2O12 ceramics[J]. J Inorg Mater, 2014, 29(2): 220-224. [19] ABREU-SEPÚLVEDA M. Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes[J]. Ionics, 2016, 22(3): 317-325. [20] LI Y.W-Doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries[J]. Electrochim Acta, 2015, 180(1): 37-42. [21] DHIVYA L. MURUGAN R.Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+conductivity of Li7La3Zr2O12 lithium garnet[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 17606-17615. [22] MURUGAN R, RAMAKUMAR S, JANANI N.High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet[J]. Electrochem Commun, 2011, 13(12): 1373-1375. [23] DEVIANNAPOORANI C, SHANKAR L S, RAMAKUMAR S, et al.Investigation on lithium ion conductivity and structural stability of yttrium-substituted Li7La3Zr2O12[J]. Ionics, 2016, 22(8): 1281-1289. [24] LI Y, WANG Z, LI C, et al.Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering[J]. J Power Sources, 2014, 248(4): 642-646. [25] ZHANG Y, CHEN F, TU R, et al.Effect of lithium ion concentration on the microstructure evolution and its association with the ionic conductivity of cubic garnet-type nominal Li7Al0.25La3Zr2O12, solid electrolytes[J]. Solid State Ionics, 2015, 284(1): 53-60. |
|
|
|