|
|
Microstructure and properties of graphite-based composites prepared by warm-pressure curing combined with CVI densification |
ZHANG Yang, LI Guodong, HAN Qianwu, JIANG Yi, WANG Yang |
National Key Laboratory of Science and Technology on High-strength Structural Materials, Central South University, Changsha 410083, China |
|
|
Abstract Using natural flake graphite powder, mesophase pitch powder and short carbon fiber as raw materials, graphite-based composites are prepared by the method of warm-pressure curing combined with chemical vapor infiltration (chemical vapor infiltration, CVI). The influence of CVI deposited pyrolytic carbon (PyC) on the microstructure and properties of graphite-based composites was studied through X-ray diffraction analysis, scanning electron microscopy and polarized light microscopy, as well as mechanical performance and thermal conductivity testing. The results show that the bending strength of the composites after CVI densification is improved compared with the graphite-based composites doped with short carbon fibers. By introducing PyC into the composite material through CVI, the bending strength of the graphite-based composites increases from 22.5 MPa to 55.9 MPa. Besides, the average grain size of the material and the degree of graphitization increase, which thereby improves the thermal conductivity of the material from 213.24 W/(m·K) to 242.80 W/(m·K).
|
Received: 13 January 2021
Published: 21 July 2021
|
|
|
|
|
[1] 王佩广, 刘永绩, 王浚. 高超声速飞行器综合热管理系统方案探讨[J]. 中国工程科学, 2007(2): 48-52. WANG Peiguang, LIU Yongji, WANG Jun.Discussion on the comprehensive thermal management system of hypersonic vehicle[J]. Chinese Engineering Science, 2007(2): 48-52. [2] 樊桢, 余立琼, 李炜, 等. 高导热炭/炭复合材料的设计与制备[J]. 中国材料进展, 2017, 36(5): 369-376. FAN Zhen, YU Liqiong, LI Wei, et al.Design and preparation of high thermal conductivity carbon/carbon composite materials[J]. China Materials Development, 2017, 36(5): 369-376. [3] YUAN G M, LI X K, DONG Z J, et al.Pitch-based ribbon- shaped carbon-fiber-reinforced one-dimensional carbon/ carbon composites with ultrahigh thermal conductivity[J]. Carbon, 2014, 68: 413-425. [4] STEPASHKIN A A, OZHERELKOV D Y, SAZONOV Y B, et al.Criteria for evaluating the fracture toughness of carbon-carbon composite materials[J]. Metal Science and Heat Treatment, 2018, 60(3/4): 266-272. [5] 李贺军, 曾燮榕, 李克智, 等. 我国炭/炭复合材料研究进展[J]. 炭素, 2001(4): 8-13. LI Hejun, ZENG Xierong, LI Kezhi, et al.Research progress of carbon/carbon composite materials in my country[J]. Carbon, 2001(4): 8-13. [6] 刘涛, 罗瑞盈, 李进松, 等. 炭/炭复合材料的热物理性能[J].炭素技术, 2005, 24(5): 28-33. LIU Tao, LUO Ruiying, LI Jinsong, et al.Thermophysical properties of carbon/carbon composites[J]. Carbon Technology, 2005, 24(5): 28-33. [7] RAGAN S, MARSH H J J. Fracture mechanisms in microstrength testing of carbon artifacts[J]. Journal of Materials Science,1983, 18(12): 3712-3720. [8] GUELLALI M, OBERACKER R, HOFFMANN M J.Influence of the matrix microstructure on the mechanical properties of CVI-infiltrated carbon fiber felts[J]. Carbon, 2005, 43(9): 1954-1960. [9] BALANDIN A A, GHOSH S, BAO W, et al.Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. [10] KUGA Y, ENDOH S, TAKEUCHI K, et al.Grinding characteristics of bromine-exfoliated graphite and natural graphite[J]. Powder Technology, 1990, 60(2): 191-196. [11] 陈洁, 熊翔, 肖鹏. 高导热石墨基复合材料的研究进展[J]. 材料导报, 2006(S2): 431-435. CHEN Jie, XIONG Xiang, XIAO Peng.Research progress of high thermal conductivity composite materials[J]. Materials Review, 2006(S2): 431-435. [12] 韩永军. 高强石墨基复合材料的低成本制备与性能研究[D]. 北京: 北京科技大学, 2015. HAN Yongjun.Low-cost preparation and performance of high-strength graphite-based composites[D]. Beijing: University of Science and Technology Beijing, 2015. [13] YUAN G M, LI X K, DONG Z J, et al.Graphite blocks with preferred orientation and high thermal conductivity[J]. Carbon, 2012, 50(1): 175-182. [14] 范壮军, 宋进仁, 刘朗, 等. 以天然石墨为原料制备高性能材料的研究[J]. 宇航材料工艺, 2001, 31(6): 44-46. FAN Zhuangjun, SONG Jinren, LIU Lang, et al.Research on the preparation of high-performance materials from natural graphite[J]. Aerospace Materials Technology, 2001, 31(6): 44-46. [15] 袁观明. 高导热炭材料的制备研究[D]. 武汉: 武汉科技大学, 2012. YUAN Guanming.Research on the preparation of high thermal conductivity carbon materials[D]. Wuhan: Wuhan University of Science and Technology, 2012. [16] 周福臣. 热解石墨在电子工业中的应用与展望[J]. 炭素, 1994(1): 46-49. ZHOU Fuchen.Application and prospect of pyrolytic graphite in electronics industry[J]. Carbon, 1994, 32(1): 46-49. [17] LIU Z J, GUO Q G, SHI J L, et al.Graphite blocks with high thermal conductivity derived from natural graphite flake[J]. Carbon, 2008, 46(3): 414-421. [18] 魏春城, 叶长收, 刘晓燕. 高取向度石墨基复合材料力学性能及微观结构研究[J]. 人工晶体学报, 2015, 44(8): 2298-2302. WEI Chuncheng, YE Changshou, LIU Xiaoyan.Research on mechanical properties and microstructure of highly oriented graphite matrix composites[J]. Journal of Synthetic Crystals, 2015, 44(8): 2298-2302. [19] 唐汉玲, 曾燮榕, 熊信柏, 等. 短切炭纤维含量对C_(sf)/SiC复合材料力学性能的影响[J]. 硅酸盐学报, 2007(8): 1057-1061. TANG Hanling, ZENG Xierong, XIONG Xinbai, et al.Influence of chopped carbon fiber content on mechanical properties of C_(sf)/SiC composites[J]. Journal of The Chinese Ceramic Society, 2007(8): 1057-1061. [20] 赵云. 短纤维增强鳞片石墨基复合材料的制备及其热/力学性能研究[D]. 北京: 中国科学院大学, 2013. ZHAO Yun.Preparation and thermal/mechanical properties of short fiber reinforced flake graphite matrix composites[D]. Beijing: University of Chinese Academy of Sciences, 2013. [21] ZHAO Y, LIU Z J, WANG H Q, et al.Microstructure and thermal/mechanical properties of short carbon fiber-reinforced natural graphite flake composites with mesophase pitch as the binder[J]. Carbon, 2013, 53(1): 313-320. [22] OHTA N, NAGAOKA K, HOSHI K, et al.Carbon-coated graphite for anode of lithium ion rechargeable batteries: Graphite substrates for carbon coating[J]. Journal of Power Sources, 2009, 194(2): 985-990. [23] 杨鑫, 苏哲安, 黄启忠, 等. PyC涂层对C/C复合材料高温氧乙炔焰烧蚀性能的影响[J]. 粉末冶金材料科学与工程, 2013, 18(4): 585-593. YANG Xin, SU Zhean, HUANG Qizhong, et al.The effect of PyC coating on the ablation performance of C/C composites with high temperature oxyacetylene flame[J]. Materials Science and Engineering of Powder Metallurgy, 2013, 18(4): 585-593. [24] 黄群, 陈腾飞, 刘磊, 等. 化学气相渗透法制备炭/炭复合材料的显微结构和力学性能研究[J]. 矿冶工程, 2014, 34(4): 111-114. HUANG Qun, CHEN Tengfei, LIU Lei, et al.Study on the microstructure and mechanical properties of carbon/carbon composites prepared by chemical vapor infiltration method[J]. Mining and Metallurgical Engineering, 2014, 34(4): 111-114. [25] 黄启忠. 高性能炭/炭复合材料的制备、结构与应用[M]. 长沙: 中南大学出版社, 2010. HUANG Qizhong.Preparation, Structure and Application of High-Performance Carbon/Carbon Composite Materials[M]. Changsha: Central South University Press, 2010. [26] 邱海鹏, 郭全贵, 宋永忠, 等. 石墨材料导热性能与微晶参数的关系[J]. 新型炭材料, 2002, 17(1): 36-40. QIU Haipeng, GUO Quangui, SONG Yongzhong, et al.The relationship between the thermal conductivity of graphite materials and the crystallite parameters[J]. New Carbon Materials, 2002, 17(1): 36-40. [27] 于澍, 刘根山, 李溪滨, 等. 炭/炭复合材料热导率影响因素的研究[J]. 稀有金属材料与工程, 2003, 32(3): 213-215. YU Shu, LIU Genshan, LI Xibin, et al.Research on influencing factors of thermal conductivity of carbon/carbon composites[J]. Rare Metal Materials and Engineering, 2003, 32(3): 213-215. [28] 姚彧敏, 李红, 刘正启, 等. 高导热炭/炭复合材料微观结构及导热性能[J]. 材料工程, 2020, 48(11): 155-161. YAO Yumin, LI Hong, LIU Zhengqi, et al.Microstructure and thermal conductivity of high thermal conductivity carbon/carbon composites[J]. Materials Engineering, 2020, 48(11): 155-161. |
|
|
|