|
|
Crystallization mechanism and morphology of high purity titanium prepared by molten salt electrolysis |
FENG Xiao1, JIANG Yuanyuan2, MA Xin2, WENG Qigang3, YUAN Tiechui1, ZHOU Zhihui1 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China; 2. AECC South Industry Co., Ltd, Zhuzhou 412002, China; 3. Zunyi Titanium Co., Ltd, Zunyi, 563004, China |
|
|
Abstract Sodium chloride and potassium chloride were used as molten salt, and sponge titanium cathode was purified by molten salt electrolysis. According to the theoretical deduction of nucleation rate in the electrolysis process, the effects of electrolysis temperature and different proportion of molten salt on the crystal morphology of high purity titanium were analyzed, and the crystallization mechanism in the electrolysis process was studied. The results show that the size of crystalline Ti particles gradually increases with the increase of electrolytic temperature, and the crystalline particles gradually change from long strip or elliptic to dendritic. The increase of KCl content in molten salt will lead to the increase of molten salt resistance and the decrease of current efficiency, resulting in the decrease of crystalline Ti particle size, the loose of crystalline Ti and high salt inclusion rate. The microscopic characterization of crystalline Ti particles revealed that during the molten salt electrolysis process, the titanium crystals grew in steps, corresponding to two-dimensional nucleation. The electrolytic titanium powder is not a single crystal, but a polycrystal containing many nanocrystals and subcrystals, with a grain size range of 100-500 nm.
|
Received: 05 January 2020
Published: 11 August 2020
|
|
|
|
|
[1] 田永武, 朱乐乐, 李伟东, 等. 高温钛合金的应用及发展[J]. 热加工工艺, 2020, 49(8): 17-20. TIAN Yongwu, ZHU Lele, LI Weidong, et al.Application and development of high temperature titanium alloy[J]. Hot Working Technology, 2020, 49(8): 17-20. [2] 刘正红, 陈志强. 高纯钛的应用及其生产方法[J]. 稀有金属快报, 2008, 27(2): 1-8. LIU Zhenghong, CHEN Zhiqiang.Application and production method of high purity titanium[J]. Rare Metal Letters, 2008, 27(2): 1-8. [3] 张臻, 华一新, 徐存英, 等. CaO-CaCl2-NaCl熔盐电解高钛渣/C制备TiC/SiC纳米复合粉体[J]. 稀有金属, 2018, 42(4): 408-414. ZHANG Zhen, HUA Yixin, XU Cunying, et al.Preparation of TiC/SiC nanocomposite powder by electrolysis of high titanium slag/C in CaO-CaCl2-NaCl molten salt[J]. Rare metals, 2018, 42(4): 408-414. [4] 李斗良, 赵以容, 杨国军. 熔盐电解法制取高纯钛的技术及产业化研究[J]. 中国锰业, 2016, 34(3): 91-94. LI Douliang, ZHAO Yirong, YANG Guojun.Study on technology and industrialization of high purity titanium production by molten salt electrolysis[J]. China Manganese Industry, 2016, 34(3): 91-94. [5] 范亚卓, 邓斌, 穆天柱, 等. 熔盐电解制备骨骼3D打印用非球形高纯钛粉[J]. 钢铁钒钛, 2017, 38(6): 43-46. FAN Yazhuo, DENG Bin, MU Tianzhu, et al.Preparation of non spherical high-purity titanium powder for 3D printing bones by molten salt electrolysis[J]. Steel Vanadium Titanium, 2017, 38(6): 43-46. [6] 翁启钢. 熔盐电解高纯钛的制备与应用基础研究[D]. 长沙: 中南大学, 2015: 18-24. WENG Qigang.Fundamental research on preparation and application of high purity titanium by molten salt electrolysis[D]. Changsha: Central South University, 2015: 18-24. [7] 李哲, 郭让民. 高纯钛的制备及其发展方向[J]. 钛工业进展, 1997, 3(3): 8-11. LI Zhe, GUO rangmin. Preparation and development of high purity titanium[J]. Progress in Titanium Industry, 1997, 3(3): 8-11. [8] 陈小亮. 熔盐电解TiO2制备金属Ti的研究[D]. 重庆: 重庆大学, 2008: 2-3. CHEN Xiaoliang.Study on the preparation of Ti by molten salt electrolysis of TiO2[D]. Chongqing: Chongqing University, 2008: 2-3. [9] 杜继红, 奚正平, 李晴宇, 等. 熔盐电解还原制备TiFe合金[J]. 稀有金属材料与工程, 2008, 37(12): 2240-2243. DU Jihong, XI Zhengping, LI Qingyu, et al.Preparation of TiFe alloy by molten salt electroreduction[J]. Rare Metal Materials and Engineering, 2008, 37(12): 2240-2243. [10] 翁启钢, 周志辉, 林洪波, 等. 熔盐电解法制备高纯钛粉[J]. 粉末冶金材料科学与工程, 2010, 15(1): 70-73. WENG Qigang, ZHOU Zhihui, LIN Hongbo, et al.Preparation of high purity titanium powder by molten salt electrolysis[J]. Materials Science and Engineering of Powder Metallurgy, 2010, 15(1): 70-73 [11] SOFRONIS P, MCMEEKING R M.Numerical analysis of hydrogen transport near a blunting crack tip[J]. Journal of the Mechanics and Physics of Solids, 1989, 37(3): 317-350. [12] WENG Q, LI R, YUAN T, et al.Hydrogenation reaction of metallic titanium prepared by molten salt electrolysis[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(5): 1425-1432. [13] 吴全兴. 高纯钛作为电子材料的应用[J]. 钛工业进展, 1996(6): 32-33. WU Quanxing.Application of high purity titanium as electronic material[J]. Progress in Titanium Industry, 1996(6): 32-33. [14] 施瑞盟, 白晨光, 杜继红. CaCl2熔盐电解钛精矿制备TiFe合金[J]. 重庆大学学报, 2011, 34(7): 34-38. SHI ruimeng, BAI Chenguang, DU Jihong. Preparation of TiFe alloy by CaCl2 molten salt electrolysis titanium concentrate[J]. Journal of Chongqing University, 2011, 34(7): 34-38. [15] 曲佳苗. LiCl-KCl熔盐体系中Pb基合金的制备[D]. 哈尔滨: 哈尔滨工程大学, 2018: 3-4. QU Jiamiao.Preparation of Pb based alloy in LiCl-KCl molten salt system[D]. Harbin: Harbin University of Engineering, 2018: 3-4. [16] 刘欢. MgCl2-NaCl-KCl熔盐体系电解Cu2S同步制备铜和硫的机理研究[D]. 马鞍山: 安徽工业大学, 2019: 20-22. LIU Huan.Study on the mechanism of simultaneous preparation of copper and sulfur by electrolysis of Cu2S in MgCl2- NaCl-KCl molten salt system[D]. Ma'anshan: Anhui University of Technology, 2019: 20-22. [17] 李春月. Zr(Ⅳ)在LiCl-KCl熔盐中的电化学行为及ZrO2纳米晶的制备[D]. 哈尔滨: 哈尔滨工程大学, 2019: 17-18. LI Chunyue.Electrochemical behavior of Zr(Ⅳ) in LiCl-KCl molten salt and preparation of ZrO2 nanocrystals[D]. Harbin: Harbin University of Engineering, 2019: 17-18. [18] 韩丽艳, 韩伟, 王冠娟, 等. 熔盐电解LiCl-KCl-AlCl3-La2O3共析出制备Al-Li-La合金[J]. 应用化学, 2013, 30(6): 698-704. HAN Liyan, HAN Wei, WANG guanjuan, et al. Preparation of Al-Li-La alloy by molten salt electrolysis of LiCl-KCl-AlCl3- La2O3 eutectoid[J]. Applied Chemistry, 2013, 30(6): 698-704. [19] 李晴宇, 杜继红, 奚正平, 等. 熔盐电解制备钛锆合金及其反应过程研究[J]. 稀有金属, 2009, 33(6): 779-784. LI Qingyu, DU Jihong, XI Zhengping, et al.Study on the preparation of Ti-Zr alloy by molten salt electrolysis and its reaction process[J]. Rare Metals, 2009, 33(6): 779-784. [20] 崔鹏, 戴玮, 颜恒维, 等. LiCl-KCl熔盐中电解还原钛铁矿的研究[J]. 有色金属(冶炼部分), 2018, 4(11): 16-18. CUI Peng, DAI Wei, YAN Hengwei, et al.Study on electrolytic reduction of ilmenite in LiCl-KCl molten salt[J]. Non Ferrous Metals (Smelting Part), 2018, 4(11): 16-18. [21] 陈孔豪. NaCl-CaCl2熔盐电解含钛物料制备TiC的研究[D]. 昆明: 昆明理工大学, 2015: 19-25. CHEN Konghao.Study on the preparation of TiC from titanium bearing materials by electrolysis of NaCl-CaCl2 molten salt[D]. Kunming: Kunming University of Science and Technology, 2015: 19-25. [22] 房孟钊, 廖春发, 王旭, 等. NaCl-KCl-Na2WO4体系熔盐电解制备钨粉的电化学特性研究[J]. 有色金属工程, 2019, 9(11): 39-44. FANG Mengzhao, LIAO Chunfa, WANG Xu, et al.Electrochemical characteristics of tungsten powder prepared by molten salt electrolysis in NaCl-KCl-Na2WO4 system[J]. Nonferrous Metal Engineering, 2019, 9(11): 39-44. [23] 蒋汉瀛. 冶金电化学[M]. 北京: 冶金工业出版社, 1983: 113-129. JIANG Hanying.Metallurgical Electrochemistry[M]. Beijing: Metallurgical Industry Press, 1983: 113-129. [24] 杨飞. 直流电炉钛渣冶炼工艺参数研究[J]. 设备管理与维修, 2018, 5(10): 155-156. YANG Fei.Study on technological parameters of titanium slag smelting in DC electric furnace[J]. Equipment Management and Maintenance, 2018, 5(10): 155-156. [25] 王震, 李坚, 华一新, 等. 钛制取工艺研究进展[J]. 稀有金属, 2014, 38(5): 915-927. WANG Zhen, LI Jian, HUA Yixin, et al.Research progress of titanium production process[J]. Rare Metals, 2014, 38(5): 915-927. [26] 陈永平. 阿仑尼乌斯经验方程中E的含义[J]. 内蒙古石油化工, 2000, 26(3): 55-56. CHEN Yongping.The meaning of E in Arenius empirical equation[J]. Inner Mongolia Petrochemical Industry, 2000, 26(3): 55-56. |
|
|
|