|
|
Thermodynamic analysis of Ti2AlNb-based alloy in the initial stage of high temperature oxidation |
YANG Jiajun, LIU Libin, ZHAO Yun, ZHANG Ligang |
School of Material Science and Engineering, Central South University, Changsha 410083, China |
|
|
Abstract The initial oxidation products of Ti-22Al-xNb(x=0-30%, mole fraction) alloy at 1 000 ℃ were calculated by phase diagram calculation. The changes of mass fraction and phase composition of Ti-22Al-27Nb and Ti-22Al-15Nb alloys at the initial stage of oxidation at this temperature were predicted. The results show that, with the increase of oxygen partial pressure, Bcc_B2 phase in the matrix changes to Hcp_A3 phase to dissolve the increased O(oxygen). The oxidation order of the elements in the alloy is Al, Ti, Nb. Al2O3, Halite(TiO) and NbO appear at the oxygen partial pressures of 4.72×10-32 MPa, 4.11×10-30 MPa and 5.53×10-25 MPa, respectively. With the increase of oxygen partial pressure, the oxidation products of Ti and Nb tend to higher oxygen content. Compared with Ti-22Al-27Nb, the mass fractions of NbO and NbO2 in Ti-22Al-15Nb alloy decrease obviously, while the mass fraction of Al2O3 increases obviously.
|
Received: 06 January 2020
Published: 19 June 2020
|
|
|
|
|
[1] WANG W, ZENG W, XUE C, et al.Quantitative analysis of the effect of heat treatment on microstructural evolution and microhardness of an isothermally forged Ti-22Al-25Nb(at.%) orthorhombic alloy[J]. Intermetallics, 2014, 45: 29-37. [2] 周伟, 姚泽坤, 秦春. 工艺参数对粗晶Ti2AlNb合金超塑性行为的影响[J]. 稀有金属材料与工程, 2014, 43(1): 209-213. ZHOU Wei, YAO Zekun, QIN Chun.Effects of process parameters on the superplastic behavior of coarse grain Ti2AlNb alloy[J]. Rare Metal Materials and Engineering, 2014, 43(1): 209-213. [3] KUMPFERT J.Intermetallic alloys based on orthorhombic titanium aluminide[J]. Adv Eng Mater, 2001, 3(11): 851-864. [4] XUE C, ZENG W, XU B, et al.B2 grain growth and particle pinning effect of Ti-22Al-25Nb orthorhombic intermetallic alloy during heating process[J]. Intermetallics, 2012, 29: 41-47. [5] WANG W, ZENG W, XUE C, et al.Microstructure control and mechanical properties from isothermal forging and heat treatment of Ti-22Al-25Nb(at.%) orthorhombic alloy[J]. Intermetallics, 2015, 56: 79-86. [6] CHEN X, WEIDONG Z, WEI W, et al.The enhanced tensile property by introducing bimodal size distribution of lamellar O for O+B2 Ti2AlNb based alloy[J]. Materials Science and Engineering A, 2013, 587: 54-60. [7] COWEN C J, BOEHLERT C J.Microstructure, creep, and tensile behavior of a Ti-21Al-29Nb(at.%) orthorhombic+B2 alloy[J]. Intermetallics, 2006, 14(4): 412-422. [8] HAGIWARA M, EMURA S, ARAOKA A, et al.Enhanced mechanical properties of orthorhombic Ti2AlNb-based intermetallic alloy[J]. Metals and Materials International, 2003, 9(3): 265-272. [9] SHEN Y, DING X, WANG F, et al.High temperature oxidation behavior of Ti-Al-Nb ternary alloys[J]. Journal of Materials Science, 2004, 39(21): 6583-6589. [10] LEYENS C, GEDANITZ H.Long-term oxidation of orthorhombic alloy Ti-22Al-25Nb in air between 650 and 800 ℃[J]. Scripta Materialia, 1999, 41(8): 901-906. [11] LEYENS C.Environmental effects on orthorhombic alloy Ti-22Al-25Nb in air between 650 and 1 000 ℃[J]. Oxidation of Metals, 1999, 52(5/6): 475-503. [12] RALISON A, DETTENWANGER F, SCHÜTZE M. Oxidation of orthorhombic Ti2AlNb alloys at 800 ℃ in air[J]. Materials and Corrosion, 2000, 51(5): 317-328. [13] RALISON A, DETTENWANGER F, SCHÜTZE M. Oxidation of orthorhombic Ti2AlNb alloys in the temperature range 550- 1 000 ℃ in air[J]. Materials at High Temperatures, 2014, 20(4): 607-629. [14] MAŁECKA J. Investigation of the oxidation behavior of orthorhombic Ti2AlNb alloy[J]. Journal of Materials Engineering and Performance, 2015, 24(5): 1834-1840. [15] XIANG J M, MI G B, QU S J, et al.Thermodynamic and microstructural study of Ti2AlNb oxides at 800 ℃[J]. Sci Rep, 2018, 8(1): 12761-12771. [16] SHI J, LI H Q, WAN M Q, et al.High temperature oxidation and inter-diffusion behavior of electroplated Ni-Re diffusion barriers between NiCoCrAlY coating and orthorhombic-Ti2AlNb alloy[J]. Corrosion Science, 2016, 102: 200-208. [17] DANG W, LI J S, ZHANG T B, et al.Oxidation behavior of Zr-containing Ti2AlNb-based alloy at 800 ℃[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(3): 783-790. [18] SAUNDERS N, MIODOWNIK A P.CALPHAD (Calculation of Phase Diagrams): A comprehensive Guide[M]. Elsevier, 1998. [19] 戴占海, 卢锦堂, 孔纲. 相图计算的研究进展[J]. 材料导报, 2006(4): 94-97. DAI Zhanhai, LU Jintang, KONG Gang.Progress in study on CALPHAD approach[J]. Materials Reports, 2006(4): 94-97. [20] 鲁晓刚, 王卓, CUI Y W, 等. 计算热力学、计算动力学与材料设计[J]. 科学通报, 2013, 58(35): 3656-3664. LU Xiaogang, WANG Zhuo, CUI Y W, et al.Computational thermodynamics, computational kinetics, and material design[J]. Chinese Science Bulletin, 2013, 58(35): 3656-3664. [21] ILATOVSKAIA M, SAVINYKH G, FABRICHNAYA O.Thermodynamic description of the Ti-Al-O system based on experimental data[J]. Journal of Phase Equilibria and Diffusion, 2016, 38(3): 175-184. [22] WITUSIEWICZ V T, BONDAR A A, HECHT U, et al.The Al-B-Nb-Ti system IV. experimental study and thermodynamic re-evaluation of the binary Al-Nb and ternary Al-Nb-Ti systems[J]. Journal of Alloys and Compounds, 2009, 472(1/2): 133-161. [23] PÉREZ R J, MASSIH A R. Thermodynamic evaluation of the Nb-O-Zr system[J]. Journal of Nuclear Materials, 2007, 360(3): 242-254. [24] LEYENS C.Oxidation of orthorhombic ritanium aluminide TI- 22AL-25NB in air between 650 and 1 000 ℃[J]. Journal of Materials Engineering and Performance, 2001, 10(2): 225-230. |
|
|
|