|
|
First-principles calculations study and experimental results of L12-structured Al3(Yb,Zr) precipitate |
CHEN Zhuo, FANG Huachan, ZHU Changjun, ZHU Jiamin |
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract The formation energy and lattice constant of L12-structured Al3Zr, Al3Sc, Al3Yb, Al3(Sc0.5,Zr0.5), Al3(Yb0.5,Zr0.5) compounds were calculated from first-principles based on plane-wave pseudopotential method. The calculated results indicate that the L12-structured Al3(Yb0.5,Zr0.5) phase is thermodynamically stable and easy to precipitate coherently in Al matrix. With the results of TEM, high-density of coherent, L12-structured Al3(Yb,Zr) precipitates with 20-80 nm are precipitated in as-homogenized Al-Zr-Yb alloy, among them, core Zr-riched Al3(Yb,Zr) and core Yb-riched Al3(Yb,Zr) phases have obvious shell-core structure. Uniform and high density precipitation of L12-structured Al3(Yb,Zr) causes an improvement of precipitation-hardened effect and inhibit-recrystallization ability, compared to L12-structured Al3Zr precipitates in pure aluminum.
|
Received: 09 October 2019
Published: 19 June 2020
|
|
|
|
|
[1] RØYSET J, RYUM N. Scandium in aluminium alloys[J]. International Material Reviews, 2005, 50(1): 19-44. [2] KNIPLING K E, DUNAND D C, SEIDMAN D N.Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during aging at 450-600 ℃[J]. Acta Metallurgica, 2008, 56(6): 1182-1195. [3] JONES M J, HUMPHREYS F J.Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed alumimium[J]. Acta Materialia, 2003, 51: 2149-2159. [4] IWAMURA S, MIURA Y.Loss in coherency and coarsening behavior of Al3Sc precipitates[J]. Acta Materialia, 2004, 52: 591-600. [5] RYUM N.Precipitation and recrystallization in an Al-0.5wt%Zr alloy[J]. Acta Metallurgica, 1969, 17(3): 269-278. [6] ROBSON J D, PRANGNELL P B.Dispersoid precipitation and process modeling in zirconium containing commercial aluminium alloys[J]. Acta Materialia, 2001, 49(4): 599-613. [7] COSTA S, PUGA H, BARBOSA J, PINTO A M P. The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al-Sc alloys[J]. Materials Design, 2012, 42: 347-352. [8] ZHANG Chaomin, JIANG Yong, CAO Fuhua, et al.Formation of coherent, core-shelled nano-particles in dilute Al-Sc-Zr alloys from the first-principles[J]. Journal of Materials Science & Technology, 2019, 35(5): 930-938. [9] ZHANG Jiayi, HU Tao, YI Danqing, et al.Double-shell structure of Al3(Zr,Sc) precipitate induced by thermomechanical treatment of Al-Zr-Sc alloy cable[J]. Journal of Rare Earths, 2019, 37(6): 668-672. [10] JIA Z H, RØYSET Jostein, SOLBERG J K, et al. Formation of precipitates and recrystallization resistance in Al-Sc-Zr alloys[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8): 1866-1871. [11] ZHANG Chaomin, YIN Dengfeng, JIANG Yong, et al.Precipitation of L12-phase nano-particles in dilute Al-Er-Zr alloys from the first-principles[J]. Computational Materials Science, 2019, 162: 171-177. [12] WEN S P, GAO K Y, HUANG H, et al.Precipitation evolution in Al-Er-Zr alloys during aging at elevated temperature[J]. Journal of Alloys and Compounds, 2013, 574: 92-97. [13] LI H Y, BIN J, LIU J J, et al.Precipitation evolution and coarsening resistance at 400 ℃ of Al microalloyed with Zr and Er[J]. Scripta Materialia, 2012, 67(1): 73-76. [14] 占春耀, 王为, 刘扬邦, 等. Zr含量对Al3(ZrxEr1-x)相价电子结构与合金性能的影响[J]. 稀有金属材料与工程, 2011, 40(4): 650-654. ZHAN Chunyao, WANG Wei, LIU Yangbang, et al.Effects of Zr content on valence electron structure of Al3(ZrxEr1-x) phase and mechanical properties of alloys[J]. Rare Metal Materials and Engineering, 2011, 40(4): 650-654. [15] 占春耀, 王为, 聂祚仁. Al-4.5Mg-Zr-Er合金的电子理论研究[J]. 材料导报, 2009, 23(9): 86-90. ZHAN Chunyao, WANG Wei, NIE Zuoren.Electron theory research on Al-4.5Mg-Zr-Er alloys[J]. Materials Review. 2009, 23(9): 86-90. [16] SEGALL M D, LINDAN Philip J D, PROBERT M J, et al. First-principles simulation: Ideas illustrations and the CASTEP code[J]. Journal of Physics Condensed Matter, 2002, 14(11): 2717-2744. [17] WANG Rennian, MA Li, PAN Rongkai, et al.First-principles study of L12-Al3(Sc1-xTMx) alloys using special quasirandom structures[J]. Computational Materials Science, 2013, 79: 136-142. [18] KNIPLING K E, DUNAND D C, SEIDMAN D N.Criteria for developing castable, creep-resistant aluminum-based alloys-A review[J]. Z Metallkunde, 2006, 97(3): 246-265. [19] GHOSH G, ASTA M.First-principles calculation of structural energetics of Al-TM (TM=Ti,Zr,Hf) intermetallics[J]. Acta Materialia, 2005, 53(11): 3225-3252. [20] WERT J A, PATON N E, HAMILTON C H.Grain refinement in 7075 aluminium by thermo-mechanical processing[J]. Metallurgical Transactions A, 1981, 12(7): 1267-1276. [21] CHEN Sicheng, LI Changrong, LIAN Guangli, et al.Effect of elastic strain energy on the core-shell structures of the precipitates in Al-Sc-Er alloys[J]. Journal of Rare Earths, 2012, 30(12): 1276-1280. [22] GACHNEIDNER K A.Theory of Alloy Phase Formation[M]. In: Bennett LH, editor Met Soc AIME, New York; 1980.1: 39. [23] 杜挺. 稀土元素在金属材料中的一些物理化学作用[J]. 金属学报, 1997, 33(1): 69-75. DU Ting.Physical-chemistry effect of rare earth elements on metallic materials[J]. Acta Metallurgica Sinica, 1997, 33(1): 69-75. |
|
|
|