Abstract Four kinds of Al-Zn-Mg-Cu alloys adding Yb, Zr, Ti were prepared by cast metallurgy. Effects of Yb-Zr, Zr-Ti, Yb-Ti, Yb-Zr-Ti additions on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloy were compared by optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), hardness and tensile test. The results show that, the Al-Zn-Mg-Cu alloy with Yb-Ti additions forms obvious subgrain boundaries during hot extrusion. After solution treatment, the alloys with Yb-Ti and Zr-Ti additions have obvious recrystallization. The alloys with Yb-Zr and Yb-Zr-Ti have obvious effect of restraining recrystallization due to the precipitation of a large number of coherent Al3(Zr,Yb) dispersed phases with size of 10-20 nm. Micron-sized Al8Cu4Yb and Al20Ti2Yb phases are precipitated in Al-Zn-Mg-Cu alloy with Yb-Ti addition, which induce the matrix recrystallization. Al-Zn-Mg-Cu-Yb-Zr alloy without recrystallization has the highest mechanical properties and fracture toughness, the ultimate strength, yield strength, elongation and fracture toughness are 721.9 MPa, 711.5 MPa, 9.7 %, 29.3 MPa·m1/2, respectively, and exhibits complete dimple fracture characteristics. The mechanical properties of Al-Zn-Mg-Cu-Yb-Ti alloy with complete recrystallization are the lowest, and the fracture mode is complete intergranular fracture.
FANG Huachan,ZHU Jiamin,CHEN Zhuo, et al. Effect of Yb, Zr, Ti additions on the microstructure and mechanical properties of super-high strength Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(2): 176-187.
[1] HEINZ A, HASZLER A, KEIDEL C E, et al.Recent development in aluminium alloys for aerospace applications[J]. Materials Science and Engineering A, 2000, 280(1): 102-107. [2] DURSUN T, SOUTIS C.Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design, 2014, 56: 862-871. [3] SONG R G, DIETZAL W, ZHANG B J, et al.Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia, 2004, 52(16): 4727-4743. [4] LIU Yuan, LIANG Shuai, JIANG Daming.Influence of repetitious non-isothermal aging on microstructure and strength of Al-Zn-Mg-Cu alloy[J]. Journal Alloy and Compounds, 2016, 689: 632-640. [5] KNIGHT S P, POHL K, HOLROYD N J H, et al. Some effects of alloy composition on stress corrosion cracking in Al-Zn- Mg-Cu alloys[J]. Corrosion Science, 2015, 98: 50-62. [6] KNIGHT S P, BIRBILIS N, MUDDLE B C, et al.Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn- Mg-Cu alloy[J]. Corrosion Science, 2010, 52(12): 4073-4080. [7] KANNAN M B, RAJA V S.Enhancing stress corrosion cracking resistance in Al-Zn-Mg-Cu-Zr alloy through inhibiting recrystallization[J]. Engineering Fracture Mechanics, 2010, 77(2): 249-256. [8] 方华婵, 陈康华, 巢宏, 等. Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J]. 粉末冶金材料科学与工程, 2009, 14(6): 351-357. FANG Huachan, CHEN Kanghua, CHAO Hong, et al.Current research status and prospects of ultra strength Al-Zn-Mg-Cu aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(6): 351-357. [9] KNIPLING K E, DUNAND D C, SEIDMAN D N.Criteria for developing castable, creep-resistant aluminum-based alloys-A review[J]. Z. Metallkunde, 2006, 97(3): 246-265. [10] WU Y L, FORES F H, LI C G, et al.Microalloying of Sc, Ni, and Ce in advanced Al-Zn-Mg-Cu alloy[J]. Metallurgical and Materials Transaction A, 1999, 30: 1017-1024. [11] 聂祚仁, 文胜平, 黄晖, 等. 铒微合金化铝合金的研究进展[J]. 中国有色金属学报, 2011, 21(10): 2361-2371. NIE Zuoren, WEN Shengping, HUANG Hui, et al.Research progress of Ercontaining aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2361-2371. [12] WU H, WEN S P, HUANG H, et al, Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy[J]. Journal Alloy and Compounds, 2016, 685: 869-880. [13] FANG H C, LUO F H, CHEN K H.Effect of intermetallic phases and recrystallization on the corrosion and fracture behavior of an Al-Zn-Mg-Cu-Zr-Yb-Cr alloy[J]. Materials Science and Engineering A, 2017, 684: 480-490. [14] FANG H C, CHAO H, CHEN K H.Effect of Zr, Er and Cr additions on microstructures and properties of Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering A, 2014, 610: 10-16. [15] ZHANG Wei, XING Yuan, JIA Zhihong, et al.Effect of minor Sc and Zr addition on microstructure and properties of ultra-high strength aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3866-3871. [16] LI Peiyong, DAI Shenglong, LI Chunyu.Thermal stability of Al20Ti2Nd in rapidly solidified Al-6Nd-2.5Ti alloy by planar flow casting[J]. Materials Science and Engineering A, 2000, 280(1): 128-137. [17] SABINE N, WOLFGANG J.Ternary aluminides AT2Al20 (A= Rare Earth Elements and Uranium; T=Ti, Nb, Ta, Mo, and W) with CeCr2Al20-type structure[J]. Journal of Solid State Chemistry, 1995, 114(2): 337-341. [18] 刘晓涛, 董杰, 崔建忠,等. 高强铝合金均匀化热处理[J]. 中国有色金属学报, 2003, 13(4): 909-913. LIU Xiaotao, DONG Jie, CUI Jianzhong, et al.Homogenizing treatment of high strength aluminium alloy cast under electric magnetic field[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(4): 909-913. [19] 王经涛, 崔建忠, 马龙翔. 元素之间的交互作用强度及其在铸态稀土铝合金中的应用[J]. 西安冶金建筑学院学报, 1993, 25(4): 445-449. WANG Jingtao, CUI Jianzhong, MA Xianglong.Interaction intensity of alloying elements and application in as-cast aluminium alloys with rare earth additions[J]. Journal of Xi’an University of Architecture & Technology, 1993, 25(4): 445-449. [20] 方华婵, 巢宏, 张茁, 等. 复合添加Zr, Ti和Cr对Al-Zn-Mg- Cu超强合金组织与性能的影响[J]. 中南大学学报: 自然科学版, 2016, 47(2): 420-429. FANG Huachan, CHAO Hong, ZHANG Zhuo, et al.Effect of Zr, Ti and Cr additions on microstructure and properties of super- high strength Al-Zn-Mg-Cu alloys[J]. Journal of Central South University: Science and Technology, 2016, 47(2): 420-429.