|
|
Photothermal conversion performance of Fe-Mn-Al-Ni-C lightweight steel |
LI Shiyao1, ZHANG Fei2, CHEN Meijie2, LI Kaiyang3, XIONG Zhiping4, SONG Min1, WANG Zhangwei1,4 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. School of Energy Science and Engineering, Central South University, Changsha 410083, China; 3. School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; 4. National Key Laboratory of Science and Technology on Materials in Impact Environment, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract In this paper, combined with surface etching and in-situ oxidation process, X-ray diffractometer, scanning electron microscope, energy spectrometer, X-ray photoelectron spectrometer, fiber optic spectrometer, and Fourier transform infrared spectrometer were used, the variations in the oxidation products on the surface of Fe-Mn-Al-Ni-C lightweight steel and their effects on photothermal conversion performance were studied by adjusting the oxidation temperature. The results show that applying etching pretreatment promotes the generation of nano-lamellar oxides, thereby effectively improving the photothermal conversion performance of the alloys compared to using the in situ oxidation process alone. After etching, the oxide size increases as the oxidation temperature rises from 300 ℃ to 400 ℃, leading to an improvement in the photothermal conversion performance of the alloy; the solar energy absorptance and photothermal conversion efficiency of the alloy reach peaks of 96.1% and 90.2%, respectively, after oxidation at 400 ℃ for 2 h; when the oxidation temperature increases to 500 ℃, increased thermal stress due to the mismatch of thermal expansion coefficients causes slight detachment of the oxide layer from the alloy surface, resulting in a decline in photothermal performance; oxidation at 600 ℃ leads to severe oxide layer detachment and the formation of Al2O3, further reducing the photothermal performance.
|
Received: 22 October 2024
Published: 08 April 2025
|
|
|
|
|
[1] LEWIS N S. Research opportunities to advance solar energy utilization[J].Science, 2016, 351(6271): aad1920. [2] 李立明. 太阳能选择性吸收涂层的研究进展[J].粉末冶金材料科学与工程, 2009, 14(1): 7-10. LI Liming.Research progress of solar energy selective absorbing coatings[J].Materials Science and Engineering of Powder Metallurgy, 2009, 14(1): 7-10. [3] SUMAN S, KHAN M K, PATHAK M.Performance enhancement of solar collectors: a review[J].Renewable and Sustainable Energy Reviews, 2015, 49: 192-210. [4] 曹宁宁, 卢松涛, 姚锐, 等. 太阳光谱选择性吸收涂层[J].化学进展, 2019, 31(4): 597-612. CAO Ningning, LU Songtao, YAO Rui, et al.Solar spectrum selective absorbing coatings[J].Progress in Chemistry, 2019, 31(4): 597-612. [5] KUMAR K K P, ATCHUTA S R, PRASAD M S, et al. Review on selective absorber coatings: a catalyst for enhanced solar energy conversion efficiency[J].Solar Energy Materials and Solar Cells, 2024, 277: 113080. [6] WU S, CHENG C H, HSIAO Y J, et al.Fe2O3 films on stainless steel for solar absorbers[J].Renewable and Sustainable Energy Reviews, 2016, 58: 574-580. [7] GAO X, JIANG E, PIKE A, et al.FeMnNiAlCr high-entropy alloys with high-efficiency surface oxide solar absorbers for concentrating solar power systems[J].High Entropy Alloys & Materials, 2024, 2(1): 97-109. [8] WANG X, LEE E, XU C, et al.High-efficiency, air-stable manganese-iron oxide nanoparticle-pigmented solar selective absorber coatings toward concentrating solar power systems operating at 750 ℃[J].Materials Today Energy, 2021, 19: 100609. [9] LIU Y Y, CHEN Z, CHEN Y Z, et al.Effect of Al content on high temperature oxidation resistance of AlxCoCrCuFeNi high entropy alloys (x=0, 0.5, 1, 1.5, 2)[J].Vacuum, 2019, 169: 108837. [10] WANG F, SONG M, ELKOT M N, et al.Shearing brittle intermetallics enhances cryogenic strength and ductility of steels[J].Science, 2024, 384(6699): 1017-1022. [11] WANG Z W, LU W J, AN F C, et al.High stress twinning in a compositionally complex steel of very high stacking fault energy[J].Nature Communications, 2022, 13(1): 3598. [12] WANG Z W, LU W J, ZHAO H, et al. Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation[J].Science Advances, 2020, 6(46): eaba9543. [13] BUKAUSKAS V, KACIULIS S, MEZZI A, et al.Effect of substrate temperature on the arrangement of ultra-thin TiO2 films grown by a dc-magnetron sputtering deposition[J].Thin Solid Films, 2015, 585: 5-12. [14] KUMAR S K, MURUGESAN S, SURESH S.Anodization assisted preparation of diverse nanostructured copper oxide films for solar selective absorber[J].Optical Materials, 2023, 135: 113304. [15] FABBRI L, SUN Y K, PICIOLLO E, et al.Electrodeposition of white bronzes on the way to CZTS absorber films[J].Journal of The Electrochemical Society, 2020, 167: 022513. [16] WU M Z, DOUGLASS D L.The selective solar absorption of oxide films grown in situ on Fe-, Ni-, and Cu-base alloys[J].Solar Energy Materials, 1988, 17(2): 119-136. [17] DOUGLASS D L, PETTIT R B.The selective solar absorptance of in situ-grown oxide films on metals[J].Solar Energy Materials, 1981, 4(4): 383-402. [18] 李雨洁, 章飞, 陈梅洁, 等. 原位氧化FeNiMnAlCrC高熵合金的光热转换性能[J].中国有色金属学报, 2024, 34(11): 3595-3607. LI Yujie, ZHANG Fei, CHEN Meijie, et al.Photothermal conversion performance of in situ oxidizing FeNiMnAlCrC high entropy alloy[J].The Chinese Journal of Nonferrous Metals, 2024, 34(11): 3595-3607. [19] ZHANG F, CHEN M, YAN H, et al.In situ oxidizing commercial alloy to achieve selective solar absorption with high-temperature stability[J].ACS Applied Energy Materials, 2023, 6(21): 10943-10950. [20] RAO A S, SAKTHIVEL S.A highly thermally stable Mn-Cu-Fe composite oxide based solar selective absorber layer with low thermal loss at high temperature[J].Journal of Alloys and Compounds, 2015, 644: 906-915. [21] TIAN Y P, LIU X J, CARATENUTO A, et al.A new strategy towards spectral selectivity: selective leaching alloy to achieve selective plasmonic solar absorption and infrared suppression[J].Nano Energy, 2022, 92: 106717. [22] QI C Y, LIU Q, DONG Y C, et al.Quenching-induced surface reconstruction of FeMn2O4 for promoted oxygen evolution reaction[J].Journal of Alloys and Compounds, 2023, 967: 171754. [23] LIU X R, SHEN X X, CHEN T T, et al.The spinel MnFe2O4 grown in biomass-derived porous carbons materials for high-performance cathode materials of aqueous zinc-ion batteries[J].Journal of Alloys and Compounds, 2022, 904: 164002. [24] BOSCH J, MARTIN U, APERADOR W, et al.Corrosion behavior of high-Mn austenitic Fe-Mn-Al-Cr-C steels in NaCl and NaOH solutions[J].Materials, 2021, 14(2): 425. [25] AGUSTIANINGRUM M P, LATIEF F H, PARK N, et al.Thermal oxidation characteristics of Fex(CoCrMnNi)100-x medium and high-entropy alloys[J].Intermetallics, 2020, 120: 106757. [26] WANG X L, WU X F, YUAN L, et al.Solar selective absorbers with foamed nanostructure prepared by hydrothermal method on stainless steel[J].Solar Energy Materials and Solar Cells, 2016, 146: 99-106. [27] 朱敏, 金鑫焱, 陈光. FeMnAlC TWIP钢加热过程中的氧化行为GD-OES研究[J].钢铁研究学报, 2022, 34(8): 807-814. ZHU Min, JIN Xinyan, CHEN Guang.GD-OES study on oxidation behavior of FeMnAlC TWIP steel sheets during heating[J].Journal of Iron and Steel Research, 2022, 34(8): 807-814. [28] 李铁藩. 金属高温氧化和热腐蚀[M].北京: 化学工业出版社, 2003: 106-109. LI Tiefan.High Temperature Oxidation and Hot Corrosion of Metals[M].Beijing: Chemical Industry Press, 2003: 106-109. [29] 周承商, 刘煌, 刘咏, 等. 金属氢化物热能储存及其研究进展[J].粉末冶金材料科学与工程, 2019, 24(5): 391-399. ZHOU Chengshang, LIU Huang, LIU Yong, et al.Metal hydride thermal energy storage and its research progress[J].Materials Science and Engineering of Powder Metallurgy, 2019, 24(5): 391-399. [30] PÉREZ P, PÉREZ F J, GÓMEZ C, et al. Oxidation behaviour of an austenitic Fe-30Mn-5Al-0.5C alloy[J].Corrosion Science, 2002, 44(1): 113-127. [31] HUANG Z Y, JIANG Y S, HOU A L, et al.Rietveld refinement, microstructure and high-temperature oxidation characteristics of low-density high manganese steels[J].Journal of Materials Science & Technology, 2017, 33(12): 1531-1539. [32] YANG J, WANG Y N, RUAN X M, et al.Effects of manganese content on solidification structures, thermal properties, and phase transformation characteristics in Fe-Mn-Al-C steels[J].Metallurgical and Materials Transactions B, 2015, 46(3): 1365-1375. [33] 唐鋆磊, 王莹莹, 乔子祺, 等. 一种用于中低温SOFC连接体的复合涂层及其制备方法: CN202211014519.6[P].2022-11-29. TANG Yunlei, WANG Yingying, QIAO Ziqi, et al. A composite coating for intermediate and low temperature SOFC interconnects and its preparation method: CN202211014519.6[P].2022-11-29. [34] 陈莹莹. Ti3SiC2/Al2O3层状复合材料的制备与性能研究[D].济南: 济南大学, 2022. CHEN Yingying.Research on the preparation and properties of Ti3SiC2/Al2O3 layered composite materials[D].Jinan: University of Jinan, 2022. [35] ZHANG N Q, ZHU Z L, YUE G Q, et al.The oxidation behaviour of an austenitic steel in deaerated supercritical water at 600-700 ℃[J].Materials Characterization, 2017, 132: 119-125. [36] RASHMI S K, NAIK H S B, JAYADEVAPPA H, et al. Influence of Sm3+ ions on structural, optical and solar light driven photocatalytic activity of spinel MnFe2O4 nanoparticles[J].Journal of Solid State Chemistry, 2017, 255: 178-192. [37] ZHANG H Y, JI Z X, XIA T, et al.Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation[J].ACS Nano, 2012, 6(5): 4349-4368. [38] ŠIMŠA Z, ŠIROKÝ P, LUKEŠ F, et al. Optical properties of manganese ferrites[J].Physica Status Solidi-Basic Solid State Physics, 1979, 96(1): 137-144. [39] GUO Z W, LIU Y L, YU B, et al.Self-supporting magnetic nanoporous silver-nickel films with broadband light absorption for efficient interfacial solar steam generation[J].Chemical Engineering Journal, 2024, 501: 157511. [40] ZHOU Q, LI H, LI D, et al.A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation[J].Journal of Colloid and Interface Science, 2021, 592: 77-86. [41] FAN Q, WU L, LIANG Y, et al.The role of micro-nano pores in interfacial solar evaporation systems: a review[J].Applied Energy, 2021, 292: 116871. |
|
|
|