|
|
Effects of warm pressing temperature on the compression and magnetic properties of FeSiBC amorphous magnetic powder cores |
LIU Shijie1, GENG Zhaowen1, CHEN Chao1, LUO Wulin2, ZHOU Kechao1 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. Suzhou Gnaxin electronic Technology Co., Ltd., Suzhou 215200, China |
|
|
Abstract High resistivity inorganic oxide nanoparticles are widely used as insulation materials for soft magnetic powder cores to reduce the eddy current loss at high frequency, as well as enhance the operational stability and energy utilization efficiency of the devices. In this research, the warm pressing process was introduced into the preparation of FeSiBC amorphous magnetic powder cores aiming at the problem that the presence of nonmagnetic oxide nanoparticles leads to a decrease in the densification and permeability of powder cores. It focused on the effects of warm pressing temperature on the formability, magnetic properties, and mechanical properties of FeSiBC amorphous magnetic powder cores. The results demonstrate that the softened resin can effectively fill the gap between the magnetic powders and enhance the bonding effect at a warm pressing temperature of 120 ℃, so that the powder core has the best compression performance and comprehensive magnetic properties. In this condition, the compressive strengths are 220.0 MPa and 269.1 MPa for the raw and coated powder cores, respectively, which are 107.5% and 47.8% higher compared to room temperature pressing powder core; the effective permeability stabilize to 20.8 H/m and 18.7 H/m in the range of 100 kHz-10 MHz, respectively, which are 20.9% and 16.9% higher compared to room temperature pressing powder core; the alternating current losses are 2 693.5 kW/m3 and 2 228.0 kW/m3 at 1 MHz and 0.05 T, respectively, which are 13.9% and 21.3% lower compared to room temperature pressing powder core. In this work, the optimized parameters in the warm pressing process are explored to enhancing the application frequency and energy utilization efficiency of magnetic powder cores, which provides insights for the preparation of FeSiBC magnetic powder cores with excellent performance.
|
Received: 21 March 2024
Published: 12 August 2024
|
|
|
|
|
[1] SILVEYRA J M, FERRARA E, HUBER D L, et al.Soft magnetic materials for a sustainable and electrified world[J]. Science, 2018, 362(6413): 413-422. [2] GUTFLEISCH O, WILLARD M A, BRÜCK E, et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient[J]. Advanced Materials, 2011, 23(7): 821-842. [3] VIJAYAKUMAR K, JOSEPH BASANTH A, KARTHIKEYAN R, et al.Influence of iron powder core on the switched reluctance motor performance enhancement[J]. Materials Today: Proceedings, 2020, 33: 2255-2263. [4] MHAN Kalathur Narasi, HANEJKO Francis, MARUCCI Michael L.粉末冶金铁基软磁材料的发展与应用[J]. 粉末冶金工业, 2010, 20(2): 43-46. MHAN Kalathur Narasi, HANEJKO Francis, MARUCCI Michael L.Growth opport unities with pm soft magnetic materials[J]. Powder Metallurgy Industry, 2010, 20(2): 43-46. [5] CHEN P B, LIU T, KONG F Y, et al.Ferromagnetic element microalloying and clustering effects in high Bs Fe-based amorphous alloys[J]. Journal of Materials Science & Technology, 2018, 34(5): 793-798. [6] 付敏, 黄钧声, 王志远, 等. FeSiB非晶磁粉芯制备工艺研究[J]. 兵器材料科学与工程, 2014, 37(3): 90-93. FU Min, HUANG Junsheng, WANG Zhiyuan, et al.Preparing process of FeSiB amorphous magnetic powder cores[J]. Ordnance Material Science and Engineering, 2014, 37(3): 90-93. [7] FISH G E, EDWARD G, LIEBERMANN H H. Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications: EP0675970B1[P].2000-02-16. [8] 高铭, 张于顺, 柏忠卫, 等. 铁基非晶纳米晶磁粉芯制备工艺研究进展[J]. 铸造技术, 2020, 41(9): 891-893. GAO Ming, ZHANG Yushun, BO Zhongwei, et al.Research progress in preparation technology of Fe-based amorphous nanocrystalline magnetic powder cores[J]. Foundry Technology, 2020, 41(9): 891-893. [9] SUETSUNA T, SUENAGA S, HARADA K.Bulk nanogranular composite of magnetic metal and insulating oxide matrix[J]. Scripta Materialia, 2016, 113: 89-92. [10] PENG Y D, YI Y, LI L Y, et al.Iron-based soft magnetic composites with Al2O3 insulation coating produced using sol-gel method[J]. Materials & Design, 2016, 109: 390-395. [11] ZHOU B, DONG Y Q, LIU L, et al.Enhanced soft magnetic properties of the Fe-based amorphous powder cores with novel TiO2 insulation coating layer[J]. Journal of Magnetism and Magnetic Materials, 2019, 474: 1-8. [12] TAGHVAEI A H, EBRAHIMI A, GHEISARI K, et al.Analysis of the magnetic losses in iron-based soft magnetic composites with MgO insulation produced by sol-gel method[J]. Journal of Magnetism and Magnetic Materials, 2010, 322(23): 3748-3754. [13] SHOKROLLAHI H, JANGHORBAN K.Effect of warm compaction on the magnetic and electrical properties of Fe-based soft magnetic composites[J]. Journal of Magnetism and Magnetic Materials, 2007, 313(1): 182-186. [14] WANG J, FAN X, WU Z Y, et al.Synthesis, microstructure and magnetic properties of Fe3Si0.7Al0.3@SiO2 core-shell particles and Fe3Si/Al2O3 soft magnetic composite core[J]. Journal of Solid State Chemistry, 2015, 231: 152-158. [15] 赖晓翔, 余红雅, 冯越, 等. 亲疏水性SiO2复合有机树脂包覆对FeSiCr磁粉芯性能的影响[J]. 材料工程, 2022, 50(2): 135-143. LAI Xiaoxiang, YU Hongya, FENG Yue, et al.Effects of hydrophilic and hydrophobic SiO2 composite organic resin coating on properties of FeSiCr magnetic powder cores[J]. Journal of Materials Engineering, 2022, 50(2): 135-143. [16] DAVIES B E, MOTTRAM R S, HARRIS I R.Recent developments in the sintering of NdFeB[J]. Materials Chemistry and Physics, 2001, 67(1/2/3): 272-281. [17] MA B, SUN A, GAO X, et al.Preparation of parylene-coated bonded NdFeB magnets[J]. Journal of Magnetism and Magnetic Materials, 2018, 467: 114-119. [18] 杨义, 倪东惠. 铁基粉末流动温压工艺中热脱脂动力学分析[J]. 粉末冶金技术, 2018, 36(4): 297-302. YANG Yi, NI Donghui.Analysis on thermal debinding kinetics of iron-based powders by warm flow compaction[J]. Powder Metallurgy Technology, 2018, 36(4): 297-302. [19] OHISA S, TAKASHIMA D, CHIBA T, et al.Low- temperature cross-linking of polyethyleneimine ethoxylated using silane coupling agents to obtain stable electron injection layers in solution-processed organic light-emitting devices[J]. Journal of Materials Chemistry C, 2019, 7(22): 6759-6766. [20] CHANG C T, DONG Y Q, LIU M, et al.Low core loss combined with high permeability for Fe-based amorphous powder cores produced by gas atomization powders[J]. Journal of Alloys and Compounds, 2018, 766: 959-963. [21] 叶倡华, 黄钧声, 李强, 等. 润滑剂对温压FeSiAl磁粉芯性能的影响[J]. 粉末冶金材料科学与工程, 2016, 21(5): 783-788. YE Changhua, HUANG Junsheng, LI Qiang, et al.Effects of lubricants on the properties of FeSiAl magnetic powder cores made by warm compaction[J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(5): 783-788. [22] 程岩, 姜琛, 张茂彩, 等. DyCuAl非晶合金薄膜制备及玻璃形成能力的评价[J/OL]. 中国稀土学报,[2024-03-21]. http://kns.cnki.net/kcms/detail/11.2365.TG.20231208.1324.0 02.html. CHEN Yan, JIANG Chen, ZHANG Maocai, et al. Preparation of DyCuAl amorphous alloy thin films and evaluation of glass formation ability[J/OL]. Journal of the Chinese Society of Rare Earths,[2024-03-21]. http://kns. cnki.net/kcms/detail/11.2365.TG.20231208.1324.002.html. [23] ZHOU B, DONG Y Q, LIU L, et al.The core-shell structured Fe-based amorphous magnetic powder cores with excellent magnetic properties[J]. Advanced Powder Technology, 2019, 30(8): 1504-1512. [24] LIU L, YUE Q, LI G Q, et al.Influence of SiO2 insulation layers thickness distribution on magnetic behaviors of Fe-Si@SiO2 soft magnetic composites[J]. Journal of Physics and Chemistry of Solids, 2019, 132: 76-82. [25] ZELIN J, REGENHARDT S A, MEYER C I, et al.Selective aqueous-phase hydrogenation of D-fructose into D-mannitol using a highly efficient and reusable Cu-Ni/SiO2 catalyst[J]. Chemical Engineering Science, 2019, 206: 315-326. [26] 彭政, 肖金生, WEI Jingbin.加热环境下丙酮/丙醇液滴的三段蒸发模型[J]. 武汉理工大学学报(信息与管理工程版), 2008, 30(3): 402-404, 419. PENG Zheng, XIAO Jinsheng, WEI Jingbin, et al.Three stages evaporation model for propanol/acetone droplet under heating[J]. Journal of Wahan University of Technology (Information & Management Engineering), 2008, 30(3): 402-404, 419. [27] 王恒旭, 徐锦佳, 林芷芊, 等. 一种新型含磷自交联阻燃剂的制备及对固态环氧树脂热稳定性和燃烧性能的影响[J]. 复合材料科学与工程, 2023(6): 59-66. WANG Hengxu, XU Jinjia, LIN Zhiqian, et al.Synthesis of a novel self-crosslinking flame retardant with phosphorus- containing and its thermal stability and combustion performance of solid epoxy resin[J]. Composites Science and Engineering, 2023(6): 59-66. [28] 蔡程帆, 李超群, 张奇, 等. 环氧树脂固化工艺优化研究[J]. 塑料科技, 2023, 51(9): 60-63. CAI Chengfan, LI Chaoqun, ZHANG Qi, et al.Optimization of epoxy resin curing process[J]. Plastics Science and Technology, 2023, 51(9): 60-63. [29] DONG Y, LI Z, LIU M, et al.The effects of field annealing on the magnetic properties of FeSiB amorphous powder cores[J]. Materials Research Bulletin, 2017, 96: 160-163. [30] ZHOU B, DONG Y Q, CHI Q, et al.Fe-based amorphous soft magnetic composites with SiO2 insulation coatings: a study on coatings thickness, microstructure and magnetic properties[J]. Ceramics International, 2020, 46(9): 13449-13459. [31] 黄钧声, 徐永春, 王志远, 等. 钝化处理对温压非晶软磁粉芯作用的研究[J]. 功能材料, 2015, 46(6): 6066-6069. HUANG Junsheng, XU Yongchun, WANG Zhiyuan, et al.Effects of passivation treatment on amorphous soft magnetic cores made by warm compaction[J]. Functional Material, 2015, 46(6): 6066-6069. [32] 赵莉, 李笃信, 李昆. 粉末冶金工艺对纯铁磁粉芯力学性能的影响[J]. 粉末冶金材料科学与工程, 2011, 16(4): 558-562. ZHAO Li, LI Duxin, LI Kun.Influence of powder metallurgy process on mechanical properties of magnetic iron powder core[J]. Materials Science and Engineering of Powder Metallurgy, 2011, 16(4): 558-562. [33] 王志远, 黄钧声, 徐永春, 等. 粘结剂对温压非晶软磁粉芯作用的研究[J]. 粉末冶金技术, 2015, 33(2): 101-104. WANG Zhiyuan, HUANG Junsheng, XU Yongchun, et al.Effect of bonding agent on amorphous soft magnetic cores made by warm compaction[J]. Powder Metallurgy Technology, 2015, 33(2): 101-104. [34] 唐晓东, 姚美君, 李晶晶, 等. 环氧树脂固化剂的研究新进展[J]. 塑料工业, 2023, 51(9): 30-38, 52. TANG Xiaodong, YAO Meijun, LI Jingjing, et al.New research progress of epoxy resin curing agent[J]. China Plastics Industry, 2023, 51(9): 30-38, 52. [35] 黄钧声, 林曦, 杨桂坤, 等. 温压工艺对铁硅铝软磁粉芯性能的影响[J]. 热加工工艺, 2023, 52(24): 49-51. HUANG Junsheng, LIN Xi, YANG Guikun, et al.Effects of warm compaction on properties of FeSiAl soft magnetic powder cores[J]. Hot Working Technology, 2023, 52(24): 49-51. [36] 叶倡华. 温压FeSiAl软磁粉芯的研究[D]. 广州: 广东工业大学, 2016. YE Changhua.Study of temperature-pressurized FeSiAl soft magnetic powder cores[D]. Guangzhou: Guangdong University of Technology, 2016. [37] 赵志刚, 王丽美, 陈天缘, 等. 基于等效复数磁导率的利兹线绕组损耗计算模型[J]. 电工技术学报, 2024, 39(4): 947-955. ZHAO Zhigang, WANG Limei, CHEN Tianyuan, et al.Calculation model of winding loss of litz-wire based on equivalent complex permeability[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 947-955. [38] 刘宽宽, 黄钧声. 温压工艺参数对FeSiAl磁粉芯密度和磁性能的影响[J]. 磁性材料及器件, 2021, 52(1): 28-31. LIU Kuankuan, HUANG Junsheng.Effect of warm compaction process parameters on the density and magnetic properties of FeSiAl magnetic powder cores[J]. Magnetic Materials and Components, 2021, 52(1): 28-31. [39] 徐永春, 徐辉元, 冯龙成, 等. 纳米SiO2包覆对温压FeSiB非晶磁粉芯软磁性能的影响[J]. 磁性材料及器件, 2023, 54(1): 60-64. XU Yongchun, XU Huiyuan, FENG Longcheng, et al.Effect of nano-SiO2 on soft magnetic properties of FeSiB amorphous magnetic powder core by warm compaction[J]. Magnetic Materials and Components, 2023, 54(1): 60-64. [40] EVANGELISTA L L, TONTINI G, RAMOS A I, et al.Developments on soft magnetic composites with double layer insulating coating: synergy between ZnO and B2O3[J]. Journal of Magnetism and Magnetic Materials, 2020, 497: 166023. [41] 仲洪海, 倪狄, 程敏, 等. 粘结剂和温压工艺对粘结钕铁硼材料性能的影响[J]. 粉末冶金工业, 2018, 28(3): 61-66. ZHONG Honghai, NI Di, CHENG Min, et al.Effects of binder and warm compaction process on the properties of bonded NdFeB magnets[J]. Powder Metallurgy Industry, 2018, 28(3): 61-66. [42] 李翔, 谢军. 氢氧化铝填料在树脂基复合材料中润湿特性研究[J]. 纤维复合材料, 2009, 26(1): 11-14. LI Xiang, XIE Jun.Researching on infiltration property of aluminum hydroxide filler in resin-based composites[J]. Fiber Composites, 2009, 26(1): 11-14. |
|
|
|